- Browse by Subject
Browsing by Subject "Flavones"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Aging impairs dendrite morphogenesis of newborn neurons and is rescued by 7, 8-dihydroxyflavone(Wiley Blackwell (Blackwell Publishing), 2017-04) Wang, Xiaoting; Romine, Jennifer Lynn; Gao, Xiang; Chen, Jinhui; Neurological Surgery, School of MedicineAll aging individuals will develop some degree of decline in cognitive capacity as time progresses. The molecular and cellular mechanisms leading to age-related cognitive decline are still not fully understood. Through our previous research, we discovered that active neural progenitor cells selectively become more quiescent in response to aging, thus leading to the decline of neurogenesis in the aged hippocampus. Here, we further find that aging impaired dendrite development of newborn neurons. Currently, no effective approach is available to increase neurogenesis or promote dendrite development of newborn neurons in the aging brain. We found that systemically administration of 7, 8-dihydroxyflavone (DHF), a small molecule imitating brain-derived neurotrophic factor (BDNF), significantly enhanced dendrite length in the newborn neurons, while it did not promote survival of immature neurons, in the hippocampus of 12-month-old mice. DHF-promoted dendrite development of newborn neurons in the hippocampus may enhance their function in the aging animal leading to a possible improvement in cognition.Item The Small-Molecule TrkB Agonist 7, 8-Dihydroxyflavone Decreases Hippocampal Newborn Neuron Death After Traumatic Brain Injury(Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2015-06) Chen, Liang; Gao, Xiang; Zhao, Shu; Hu, Weipeng; Chen, Jinhui; Department of Neurological Surgery, IU School of MedicinePrevious studies in rodents have shown that after a moderate traumatic brain injury (TBI) with a controlled cortical impact (CCI) device, the adult-born immature granular neurons in the dentate gyrus are the most vulnerable cell type in the hippocampus. There is no effective approach for preventing immature neuron death after TBI. We found that tyrosine-related kinase B (TrkB), a receptor of brain-derived neurotrophic factor (BDNF), is highly expressed in adult-born immature neurons. We determined that the small molecule imitating BDNF, 7, 8-dihydroxyflavone (DHF), increased phosphorylation of TrkB in immature neurons both in vitro and in vivo. Pretreatment with DHF protected immature neurons from excitotoxicity-mediated death in vitro, and systemic administration of DHF before moderate CCI injury reduced the death of adult-born immature neurons in the hippocampus 24 hours after injury. By contrast, inhibiting BDNF signaling using the TrkB antagonist ANA12 attenuated the neuroprotective effects of DHF. These data indicate that DHF may be a promising chemical compound that promotes immature neuron survival after TBI through activation of the BDNF signaling pathway.