ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Fetal alcohol spectrum disorder"

Now showing 1 - 10 of 10
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Characterization of Ethanol-induced Effects on Zebrafish Retinal Development: Mechanistic Perspective and Therapeutic Strategies
    (2016) Muralidharan, Pooja; Marrs, James A.; Leung, Yuk Fai; Belecky-Adams, Teri; Meyer, Jason; Anderson, Ryan M.; Randall, Stephen K.
    Fetal alcohol spectrum disorder (FASD) is a result of prenatal alcohol exposure, producing a wide range of defects including craniofacial, sensory, motor and cognitive deficits. Many ocular abnormalities are frequently associated with FASD including microphthalmia, optic nerve hypoplasia, and cataracts. FASD is highly prevalent in low socioeconomic populations, where it is also accompanied by higher rates of malnutrition and alcoholism. Using zebrafish as a model to study FASD retinal defects has been extremely insightful in understanding the ethanol-induced retinal defects at the cellular level. Zebrafish embryos treated with ethanol from mid-blastula transition through somitogenesis (2-24 hours post fertilization; hpf) showed defects similar to human ocular deficits including microphthalmia, optic nerve hypoplasia, and photoreceptor differentiation defects. Ethanol exposure altered critical transcription factor expression involved in retinal cell differentiation. Retinoic acid (RA) and folic acid (FA) nutrient co-supplementation rescued optic nerve and photoreceptor differentiation defects. Ethanol exposure during retinal morphogenesis stages (16-24 hpf), produced retinal defects like those seen with ethanol exposure between 2-24 hpf. Significantly, during ethanol-sensitive time window (16-24 hpf), RA co-supplementation moderately rescued these defects, whereas, FA cosupplementation showed significant rescue of optic nerve and photoreceptor differentiation. RA, but not FA, supplementation after ethanol exposure could restore ethanol-induced optic nerve and photoreceptor differentiation defects. Ethanol exposure did not affect timing of retinal cell differentiation induction, but later increased retinal cell death and proliferation. Ethanol-treated embryos showed increased retinal proliferation in the outer nuclear layer (ONL), inner nuclear layer (INL), and ciliary marginal zone (CMZ) at 48 hpf and 72 hpf. In order to identify the genesis of ethanol-induced persistent retinal defects, ethanol effects on retinal stem cell populations in the CMZ and the Müller glial cells (MGCs) were examined. Ethanol treated retinas had an expanded CMZ indicated by histology and Alcama, a retinal stem cell marker, immunolabeling, but reduced expression of rx1 and the cell cycle exit marker, cdkn1c. Ethanol treated retinas also showed reduced MGCs. At 72 hpf, ONL of ethanol exposed fish showed fewer photoreceptors expressing terminal differentiation markers. Importantly, these poorly differentiated photoreceptors co-expressed the basic helix-loop-helix (bHLH) proneural differentiation factor, neurod, indicating that ethanol exposure produced immature and undifferentiated photoreceptors. Reduced differentiation along with increased progenitor marker expression and proliferation suggest cell cycle exit failure due to ethanol exposure. These results suggested that ethanol exposure disrupted stem cell differentiation progression. Wnt, Notch and proneural gene expression regulate retinal stem cell proliferation and transition into progenitor cells. Ethanol exposure disrupted Wnt activity in the CMZ as well as Notch activity and neurod gene expression in the retina. RA and FA co-supplementation were able to rescue Wnt activity in the CMZ and rescue downstream Notch activity. To test whether the rescue of these Wnt-active cells could restore the retinal cell differentiation pathways, ethanol treated embryos were treated with Wnt agonist. This treatment could restore Wnt-active cells in the CMZ, Notch-active cells in the retina, proliferation, and photoreceptor terminal differentiation. We conclude that ethanol exposure produced persistent defects in the stem cell Wnt signaling, a critical pathway in retinal cell differentiation. Further analysis of underlying molecular mechanisms will provide insight into the embryonic origins of ethanol-induced retinal defects and potential therapeutic targets to cure this disorder.
  • Loading...
    Thumbnail Image
    Item
    Complex cardiac defects after ethanol exposure during discrete cardiogenic events in zebrafish: prevention with folic acid
    (Wiley, 2013-10) Swapnalee, Sarmah; Marrs, James A.; Biology, School of Science
    Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS: Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbs multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis, and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS: Our results indicate that ethanol exposure interrupted divergent cardiac morphogenetic events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects.
  • Loading...
    Thumbnail Image
    Item
    Embryonic Ethanol Exposure Affects Early- and Late-Added Cardiac Precursors and Produces Long-Lasting Heart Chamber Defects in Zebrafish
    (MDPI, 2017-12-01) Sarmah, Swapnalee; Marrs, James A.; Biology, School of Science
    Drinking mothers expose their fetuses to ethanol, which produces birth defects: craniofacial defects, cognitive impairment, sensorimotor disabilities and organ deformities, collectively termed as fetal alcohol spectrum disorder (FASD). Various congenital heart defects (CHDs) are present in FASD patients, but the mechanisms of alcohol-induced cardiogenesis defects are not completely understood. This study utilized zebrafish embryos and older larvae to understand FASD-associated CHDs. Ethanol-induced cardiac chamber defects initiated during embryonic cardiogenesis persisted in later zebrafish life. In addition, myocardial damage was recognizable in the ventricle of the larvae that were exposed to ethanol during embryogenesis. Our studies of the pathogenesis revealed that ethanol exposure delayed differentiation of first and second heart fields and reduced the number of early- and late-added cardiomyocytes in the heart. Ethanol exposure also reduced the number of endocardial cells. Together, this study showed that ethanol-induced heart defects were present in late-stage zebrafish larvae. Reduced numbers of cardiomyocytes partly accounts for the ethanol-induced zebrafish heart defects.
  • Loading...
    Thumbnail Image
    Item
    Embryonic ethanol exposure alters expression of sox2 and other early transcripts in zebrafish, producing gastrulation defects
    (Springer Nature, 2020-03-03) Sarmah, Swapnalee; Srivastava, Rajneesh; McClintick, Jeanette N.; Janga, Sarath C.; Edenberg, Howard J.; Marrs, James A.; Biology, School of Science
    Ethanol exposure during prenatal development causes fetal alcohol spectrum disorder (FASD), the most frequent preventable birth defect and neurodevelopmental disability syndrome. The molecular targets of ethanol toxicity during development are poorly understood. Developmental stages surrounding gastrulation are very sensitive to ethanol exposure. To understand the effects of ethanol on early transcripts during embryogenesis, we treated zebrafish embryos with ethanol during pre-gastrulation period and examined the transcripts by Affymetrix GeneChip microarray before gastrulation. We identified 521 significantly dysregulated genes, including 61 transcription factors in ethanol-exposed embryos. Sox2, the key regulator of pluripotency and early development was significantly reduced. Functional annotation analysis showed enrichment in transcription regulation, embryonic axes patterning, and signaling pathways, including Wnt, Notch and retinoic acid. We identified all potential genomic targets of 25 dysregulated transcription factors and compared their interactions with the ethanol-dysregulated genes. This analysis predicted that Sox2 targeted a large number of ethanol-dysregulated genes. A gene regulatory network analysis showed that many of the dysregulated genes are targeted by multiple transcription factors. Injection of sox2 mRNA partially rescued ethanol-induced gene expression, epiboly and gastrulation defects. Additional studies of this ethanol dysregulated network may identify therapeutic targets that coordinately regulate early development.
  • Loading...
    Thumbnail Image
    Item
    Embryonic Ethanol Exposure Dysregulates BMP and Notch Signaling, Leading to Persistent Atrio-Ventricular Valve Defects in Zebrafish
    (Plos, 2016-08-24) Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A.; Department of Biology, School of Science
    Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.
  • Loading...
    Thumbnail Image
    Item
    Ethanol Effects on Early Developmental Stages Studied Using the Zebrafish
    (MDPI, 2022-10-13) Manikandan, Priyadharshini; Sarmah, Swapnalee; Marrs, James A.; Biology, School of Science
    Fetal alcohol spectrum disorder (FASD) results from prenatal ethanol exposure. The zebrafish (Danio rerio) is an outstanding in vivo FASD model. Early development produced the three germ layers and embryonic axes patterning. A critical pluripotency transcriptional gene circuit of sox2, pou5f1 (oct4; recently renamed pou5f3), and nanog maintain potency and self-renewal. Ethanol affects sox2 expression, which functions with pou5f1 to control target gene transcription. Various genes, like elf3, may interact and regulate sox2, and elf3 knockdown affects early development. Downstream of the pluripotency transcriptional circuit, developmental signaling activities regulate morphogenetic cell movements and lineage specification. These activities are also affected by ethanol exposure. Hedgehog signaling is a critical developmental signaling pathway that controls numerous developmental events, including neural axis specification. Sonic hedgehog activities are affected by embryonic ethanol exposure. Activation of sonic hedgehog expression is controlled by TGF-ß family members, Nodal and Bmp, during dorsoventral (DV) embryonic axis establishment. Ethanol may perturb TGF-ß family receptors and signaling activities, including the sonic hedgehog pathway. Significantly, experiments show that activation of sonic hedgehog signaling rescues some embryonic ethanol exposure effects. More research is needed to understand how ethanol affects early developmental signaling and morphogenesis.
  • Loading...
    Thumbnail Image
    Item
    Ethanol exposure disrupts extraembryonic microtubule cytoskeleton and embryonic blastomere cell adhesion, producing epiboly and gastrulation defects
    (The Company of Biologists, 2013-08-14) Sarmah, Swapnalee; Muralidharan, Pooja; Curtis, Courtney L.; McClintick, Jeanette N.; Buente, Bryce B.; Holdgrafer, David J.; Ogbeifun, Osato; Olorungbounmi, Opeyemi C.; Patino, Liliana; Lucas, Ryan; Gilbert, Sonya; Groninger, Evan S.; Arciero, Julia; Edenberg, Howard J.; Marrs, James A.; Biology, School of Science
    Fetal alcohol spectrum disorder (FASD) occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell), prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a), which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue) microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.
  • Loading...
    Thumbnail Image
    Item
    Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD)
    (Elsevier, 2020-09) Caden, Pabyton Gonçalves; Cadena, Marilia Ribeiro Sales; Sarmah, Swapnalee; Marrs, James A.; Biology, School of Science
    The objective of this work was to determine whether folic acid (FA) reduces the embryonic ethanol (EtOH) exposure induced behavioral and morphological defects in our zebrafish fetal alcohol spectrum disorder (FASD) model. Teratogenic effects, mortality, the excitatory light-dark locomotion (ELD), sleep (SL), thigmotaxis (TH), touch sensitivity (TS), and optomotor response (OMR) tests were evaluated in larvae (6–7 days post-fertilization) using four treatment conditions: Untreated, FA, EtOH and EtOH+FA. FA reduced morphological defects on heart, eyes and swim bladder inflation seen in EtOH exposed fish. The larvae were more active in the dark than in light conditions, and EtOH reduced the swimming activity in the ELD test. EtOH affected the sleep pattern, inducing several arousal periods and increasing inactivity in zebrafish. FA reduces these toxic effects and produced more consistent inactivity during the night, reducing the arousal periods. FA also prevented the EtOH-induced defects in thigmotaxis and optomotor response of the larvae. We conclude that in this FASD model, EtOH exposure produced several teratogenic and behavioral defects, FA reduced, but did not totally prevent, these defects. Understanding of EtOH-induced behavioral defects could help to identify new therapeutic or prevention strategies for FASD.
  • Loading...
    Thumbnail Image
    Item
    Polymorphisms in the choline transporter SLC44A1 are associated with reduced cognitive performance in normotypic but not prenatal alcohol-exposed children
    (Elsevier, 2024) Smith, Susan M.; Weathers, Torri D.; Virdee, Manjot S.; Schwantes-An, Tae-Hwi; Voruganti, Venkata Saroja; Mattson, Sarah N.; Coles, Claire D.; Kable, Julie A.; Sowell, Elizabeth; Wozniak, Jeffrey R.; Wetherill, Leah; Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD) Consortium; Medical and Molecular Genetics, School of Medicine
    Background: Choline is essential for healthy cognitive development. Single nucleotide polymorphisms (SNPs; rs3199966(G), rs2771040(G)) within the choline transporter SLC44A1 increase risk for choline deficiency. In a choline intervention trial of children who experienced prenatal alcohol exposure (PAE), these alleles are associated with improved cognition. Objective: This study aimed to determine if SNPs within SLC44A1 are differentially associated with cognition in children with PAE compared with normotypic controls (genotype × exposure). A secondary objective tested for an association of these SNPs and cognition in controls (genotype-only). Design: This is a secondary analysis of data from the Collaborative Initiative on Fetal Alcohol Spectrum Disorders. Participants (163 normotypic controls, 162 PAE) underwent psychological assessments and were genotyped within SLC44A1. Choline status was not assessed. Association analysis between genotype × exposure was performed using an additive genetic model and linear regression to identify the allelic effect. The primary outcome was the interaction between SLC44A1 genotype × exposure status with respect to cognition. The secondary outcome was the cognitive-genotype association in normotypic controls. Results: Genotype × exposure analysis identified 7 SNPs in SLC44A1, including rs3199966(G) and rs2771040(G), and in strong linkage (D' ≥ 0.87), that were associated (adjusted P ≤ 0.05) with reduced performance in measures of general cognition, nonverbal and quantitative reasoning, memory, and executive function (β, 1.92-3.91). In controls, carriers of rs3199966(GT or GG) had worsened cognitive performance than rs3199966(TT) carriers (β, 0.46-0.83; P < 0.0001), whereas cognitive performance did not differ by rs3199966 genotype in those with PAE. Conclusions: Two functional alleles that increase vulnerability to choline deficiency, rs3199966(G) (Ser644Ala) and rs2771040(G) (3' untranslated region), are associated with worsened cognition in otherwise normotypic children. These alleles were previously associated with greater cognitive improvement in children with PAE who received supplemental choline. The findings endorse that choline benefits cognitive development in normotypic children and those with PAE.
  • Loading...
    Thumbnail Image
    Item
    Rehabilitation Training Using Complex Motor Learning Rescues Deficits in Eyeblink Classical Conditioning in Female Rats Induced by Binge-Like Neonatal Alcohol Exposure
    (Wiley, 2013) Wagner, Jennifer L.; Klintsova, Anna Y.; Greenough, William T.; Goodlett, Charles R.; Psychology, School of Science
    Background: Effective treatments for the behavioral and cognitive deficits in children with fetal alcohol spectrum disorders (FASD) are lacking, and translational approaches using animal models can help develop rational interventions. One such model, binge-like alcohol exposure in neonatal rats during the period of brain development comparable with that of the human third trimester, causes structural and functional damage to the cerebellum and disrupts cerebellar-dependent eyeblink classical conditioning. The eyeblink conditioning deficits first demonstrated in this rat model predicted the similar deficits subsequently demonstrated in children with FASD. Methods: The current study extends this translational approach by testing the hypothesis that rehabilitation training involving 20 days of training on traversal of an obstacle course (complex motor learning) would ameliorate the deficits on classical conditioning of eyeblink responses produced by the neonatal alcohol exposure. We have previously shown that this training stimulates cerebellar synaptic plasticity and improves alcohol-induced deficits on motor coordination tasks. Results: The current studies found that rehabilitation training significantly attenuated alcohol-induced deficits in acquisition of eyeblink conditioning in females but not in males. These results are consistent with normalization of cerebellar-dependent learning, at least in alcohol-exposed females. Conclusions: These findings extend previous studies in this model suggesting that rehabilitation of adolescents with FASD using training with complex motor learning tasks could be effective in ameliorating functional impairments associated with cerebellar damage. Eyeblink classical conditioning deficits are now well documented in children with FASD and could serve as an evaluation measure to continue to develop therapeutic interventions such as complex motor learning.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University