- Browse by Subject
Browsing by Subject "Fetal"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A single-cell level comparison of human inner ear organoids with the human cochlea and vestibular organs(Cell Press, 2023) van der Valk, Wouter H.; van Beelen, Edward S. A.; Steinhart, Matthew R.; Nist-Lund, Carl; Osorio, Daniel; de Groot, John C. M. J.; Sun, Liang; van Benthem, Peter Paul G.; Koehler, Karl R.; Locher, Heiko; Otolaryngology -- Head and Neck Surgery, School of MedicineInner ear disorders are among the most common congenital abnormalities; however, current tissue culture models lack the cell type diversity to study these disorders and normal otic development. Here, we demonstrate the robustness of human pluripotent stem cell-derived inner ear organoids (IEOs) and evaluate cell type heterogeneity by single-cell transcriptomics. To validate our findings, we construct a single-cell atlas of human fetal and adult inner ear tissue. Our study identifies various cell types in the IEOs including periotic mesenchyme, type I and type II vestibular hair cells, and developing vestibular and cochlear epithelium. Many genes linked to congenital inner ear dysfunction are confirmed to be expressed in these cell types. Additional cell-cell communication analysis within IEOs and fetal tissue highlights the role of endothelial cells on the developing sensory epithelium. These findings provide insights into this organoid model and its potential applications in studying inner ear development and disorders.Item Characterization of Maternal and Fetal CYP3A-Mediated Progesterone Metabolism(Taylor & Francis, 2017-10) Quinney, Sara K.; Benjamin, Tara D.; Zheng, Xiaomei; Patil, Avinash; Obstetrics and Gynecology, School of MedicineINTRODUCTION: Progesterone is critical for maintaining pregnancy and onset of labor. We evaluated CYP450-mediated progesterone meta-bolism, specifically the contribution of CYP3A isoforms. MATERIALS AND METHODS: In vitro progesterone metabolism was characterized in human liver microsomes (HLMs) with and without selective cytochrome P450 inhibitors and in recombinant CYP3A4, CYP3A5, and CYP3A7. 6β-hydroxyprogesterone (6β-OHP) and 16α-hydroxyprogesterone (16α-OHP) metabolites were quantified by HPLC/UV and fit to the Michaelis-Menten equation to determine Km and Vmax. The effect of CYP3A5 expression on progesterone clearance was determined by in vitro in vivo extrapolation. RESULTS: Ketoconazole inhibited formation of both 6β-OHP and 16α-OHP more than 95%. 6β-OHP and 16α-OHP were both produced by CYP3A4 (2.3 and 1.3 µL/min/pmol, respectively) to a greater extent than by CYP3A5 (0.09 and 0.003 µL/min/pmol) and CYP3A7 (0.004 and 0.003 µL/min/pmol). CONCLUSIONS: Maternal clearance of progesterone by hepatic CYP450's is driven primarily by CYP3A4, with limited contributions from CYP3A5 and CYP3A7.Item Zika and Flavivirus Shell Disorder: Virulence and Fetal Morbidity(MDPI, 2019-11-06) Goh, Gerard Kian-Meng; Dunker, A. Keith; Foster, James A.; Uversky, Vladimir N.; Biochemistry and Molecular Biology, School of MedicineZika virus (ZIKV) was first discovered in 1947 in Africa. Since then, sporadic ZIKV infections of humans have been reported in Africa and Asia. For a long time, this virus was mostly unnoticed due to its mild symptoms and low fatality rates. However, during the 2015–2016 epidemic in Central and South America, when millions of people were infected, it was discovered that ZIKV causes microcephaly in the babies of mothers infected during pregnancy. An examination of the M and C proteins of the ZIKV shell using the disorder predictor PONDR VLXT revealed that the M protein contains relatively high disorder levels comparable only to those of the yellow fever virus (YFV). On the other hand, the disorder levels in the C protein are relatively low, which can account for the low case fatality rate (CFR) of this virus in contrast to the more virulent YFV, which is characterized by high disorder in its C protein. A larger variation was found in the percentage of intrinsic disorder (PID) in the C protein of various ZIKV strains. Strains of African lineage are characterized by higher PIDs. Using both in vivo and in vitro experiments, laboratories have also previously shown that strains of African origin have a greater potential to inflict higher fetal morbidity than do strains of Asian lineage, with dengue-2 virus (DENV-2) having the least potential. Strong correlations were found between the potential to inflict fetal morbidity and shell disorder in ZIKV (r2 = 0.9) and DENV-2 (DENV-2 + ZIKV, r2 = 0.8). A strong correlation between CFR and PID was also observed when ZIKV was included in an analysis of sets of shell proteins from a variety of flaviviruses (r2 = 0.8). These observations have potential implications for antiviral vaccine development and for the design of cancer therapeutics in terms of developing therapeutic viruses that penetrate hard-to-reach organs.