- Browse by Subject
Browsing by Subject "Fatty Acids"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Cell-intrinsic lysosomal lipolysis is essential for macrophage alternative activation(Nature Publishing Group, 2014-09) Huang, Stanley Ching-Cheng; Everts, Bart; Ivanova, Yulia; O'Sullivan, David; Nascimento, Marcia; Smith, Amber M.; Beatty, Wandy; Love-Gregory, Latisha; Lam, Wing Y.; O'Neill, Christina M.; Yan, Cong; Du, Hong; Abumrad, Nada A.; Urban, Joseph F.; Artyomov, Maxim N.; Pearce, Erika L.; Pearce, Edward J.; Department of Pathology & Laboratory Medicine, IU School of MedicineAlternative (M2) macrophage activation driven through interleukin 4 receptor α (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of fatty acids to support this metabolic program has not been clear. We show that the uptake of triacylglycerol substrates via CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation (OXPHOS), enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth, and blocked protective responses against this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.Item Consequences of linoleic acid deficiency in respect to fatty acid biosynthesis(1964) Allmann, David WilliamItem Establishment of lal-/- myeloid lineage cell line that resembles myeloid-derived suppressive cells(PLoS, 2015-03-25) Ding, Xinchun; Wu, Lingyan; Yan, Cong; Du, Hong; Department of Pathology and Laboratory Medicine, IU School of MedicineMyeloid-derived suppressor cells (MDSCs) in mouse are inflammatory cells that play critical roles in promoting cancer growth and metastasis by directly stimulating cancer cell proliferation and suppressing immune surveillance. In order to facilitate characterization of biochemical and cellular mechanisms of MDSCs, it is urgent to establish an "MDSC-like" cell line. By cross breeding of immortomouse (simian virus 40 large T antigen transgenic mice) with wild type and lysosomal acid lipase (LAL) knock-out (lal-/-) mice, we have established a wild type (HD1A) and a lal-/- (HD1B) myeloid cell lines. Compared with HD1A cells, HD1B cells demonstrated many characteristics similar to lal-/- MDSCs. HD1B cells exhibited increased lysosomes around perinuclear areas, dysfunction of mitochondria skewing toward fission structure, damaged membrane potential, and increased ROS production. HD1B cells showed increased glycolytic metabolism during blockage of fatty acid metabolism to fuel the energy need. Similar to lal-/- MDSCs, the mTOR signal pathway in HD1B cells is overly activated. Rapamycin treatment of HD1B cells reduced ROS production and restored the mitochondrial membrane potential. HD1B cells showed much stronger immunosuppression on CD4+ T cell proliferation and function in vitro, and enhanced cancer cells proliferation. Knockdown of mTOR with siRNA reduced the HD1B cell ability to immunosuppress T cells and stimulate cancer cell proliferation. Therefore, the HD1B myeloid cell line is an "MDSC-like" cell line that can be used as an alternative in vitro system to study how LAL controls various myeloid cell functions.Item Fatty acid profiles from the dissimilation of hydrocarbons by Micrococcus cerificans(1967) Makula, Ronald AlanItem Participation of the enzyme carnitine acetyltransferase in the synthess of fatty acids from pyruvate in rat liver(1964) Rahman, Muhammad ShamsurItem Regulation of carnitine palmitoyltransferase I: limiting enzyme of fatty acid oxidation(1985) Stephens, Thomas WesleyItem Studies on myocardial metabolism(1970) Manno, Barbara ReynoldsItem Studies on the polymeric structure and activity of acetyl CoA carboxylase(1981) Buechler, Kenneth Francis