- Browse by Subject
Browsing by Subject "Fasting"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Acute Changes in Sleep Duration on Eating Behaviors and Appetite-Regulating Hormones in Overweight/Obese Adults(Taylor & Francis, 2015) Hart, Chantelle N.; Carskadon, Mary A.; Demos, Kathryn E.; Van Reen, Eliza; Sharkey, Katherine M.; Raynor, Hollie A.; Considine, Robert V.; Jones, Richard N.; Wing, Rena R.; Department of Medicine, IU School of MedicineThere is considerable interest in the role of sleep in weight regulation, yet few studies have examined this relationship in overweight/obese (OW/OB) adults. Using a within-subject, counterbalanced design, 12 OW/OB women were studied in lab with two nights of short (5 hr time in bed [TIB]) and two nights of long (9 hr TIB) sleep. Hunger, consumption at a buffet, and fasting hormone levels were obtained. Significant polysomnographic differences occurred between conditions in total sleep time and sleep architecture (ps < .001). Percent energy from protein at the buffet increased following short sleep. No differences were observed for total energy intake or measured hormones. Further research is needed to determine how lengthening sleep impacts weight regulation in OW/OB adults.Item Evidence of mononuclear cell preactivation in the fasting state in polycystic ovary syndrome(Elsevier, 2014-12) González, Frank; Kirwan, John P.; Rote, Neal S.; Minium, Judi; Department of Obstetrics and Gynecology, IU School of MedicineOBJECTIVE: We evaluated mononuclear cell (MNC) preactivation in women with polycystic ovary syndrome (PCOS) by examining the effect of in vitro lipopolysaccharide (LPS) exposure on cytokine release in the fasting state. STUDY DESIGN: Twenty women with PCOS (10 lean, 10 obese) and 20 weight-matched controls (10 lean, 10 obese) volunteered for study participation. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) release was measured from mononuclear cells isolated from fasting blood samples and cultured in the presence and absence of LPS. Plasma IL-6 was measured from the same fasting blood samples. Insulin sensitivity was derived from an oral glucose tolerance test using the Matsuda index, and truncal fat was measured by dual-energy x-ray absorptiometry. RESULTS: The percent change from baseline in TNF-α and IL-6 release from MNC following LPS exposure was increased (P < .04) in lean and obese women with PCOS and obese controls compared with lean controls. Plasma IL-6 was increased (P < .02) in obese women with PCOS compared with lean women with PCOS, which in turn was increased (P < .02) compared with lean controls. The MNC-derived TNF-α and IL-6 responses from MNCs were negatively correlated with insulin sensitivity (P < .03) and positively correlated with testosterone (P < .03) and androstenedione (P < .006) for the combined groups. Plasma IL-6 was positively correlated with percentage truncal fat (P < .008). CONCLUSION: In PCOS, increased cytokine release from MNCs following LPS exposure in the fasting state reveals the presence of MNC preactivation. Importantly, this phenomenon is independent of obesity and may contribute to the development of insulin resistance and hyperandrogenism in PCOS. In contrast, the source of plasma IL-6 elevations in PCOS may be excess adiposity.Item Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility(Nature Publishing Group, 2015-01-29) Wessel, Jennifer; Chu, Audrey Y.; Willems, Sara M.; Wang, Shuai; Yaghootkar, Hanieh; Brody, Jennifer A.; Dauriz, Marco; Hivert, Marie-France; Raghavan, Sridharan; Lipovich, Leonard; Hidalgo, Bertha; Fox, Keolu; Huffman, Jennifer E.; An, Ping; Lu, Yingchang; Rasmussen-Torvik, Laura J.; Grarup, Niels; Ehm, Margaret G.; Li, Li; Baldridge, Abigail S.; Stančáková, Alena; Abrol, Ravinder; Besse, Céline; Boland, Anne; Bork-Jensen, Jette; Fornage, Myriam; Freitag, Daniel F.; Garcia, Melissa E.; Guo, Xiuqing; Hara, Kazuo; Isaacs, Aaron; Jakobsdottir, Johanna; Lange, Leslie A.; Layton, Jill C.; Li, Man; Hua Zhao, Jing; Meidtner, Karina; Morrison, Alanna C.; Nalls, Mike A.; Peters, Marjolein J.; Sabater-Lleal, Maria; Schurmann, Claudia; Silveira, Angela; Smith, Albert V.; Southam, Lorraine; Stoiber, Marcus H.; Strawbridge, Rona J.; Taylor, Kent D.; Varga, Tibor V.; Allin, Kristine H.; Amin, Najaf; Aponte, Jennifer L.; Aung, Tin; Barbieri, Caterina; Bihlmeyer, Nathan A.; Boehnke, Michael; Bombieri, Cristina; Bowden, Donald W.; Burns, Sean M.; Chen, Yuning; Chen, Yii-DerI; Cheng, Ching-Yu; Correa, Adolfo; Czajkowski, Jacek; Dehghan, Abbas; Ehret, Georg B.; Eiriksdottir, Gudny; Escher, Stefan A.; Farmaki, Aliki-Eleni; Frånberg, Mattias; Gambaro, Giovanni; Giulianini, Franco; Goddard, William A.; Goel, Anuj; Gottesman, Omri; Grove, Megan L.; Gustafsson, Stefan; Hai, Yang; Hallmans, Göran; Heo, Jiyoung; Hoffmann, Per; Ikram, Mohammad K.; Jensen, Richard A.; Jørgensen, Marit E.; Jørgensen, Torben; Karaleftheri, Maria; Khor, Chiea C.; Kirkpatrick, Andrea; Kraja, Aldi T.; Kuusisto, Johanna; Lange, Ethan M.; Lee, I. T.; Lee, Wen-Jane; Leong, Aaron; Liao, Jiemin; Liu, Chunyu; Liu, Yongmei; Lindgren, Cecilia M.; Linneberg, Allan; Malerba, Giovanni; Mamakou, Vasiliki; Marouli, Eirini; Maruthur, Nisa M.; Matchan, Angela; McKean-Cowdin, Roberta; McLeod, Olga; Metcalf, Ginger A.; Mohlke, Karen L.; Muzny, Donna M.; Ntalla, Ioanna; Palmer, Nicholette D.; Pasko, Dorota; Peter, Andreas; Rayner, Nigel W.; Renström, Frida; Rice, Ken; Sala, Cinzia F.; Sennblad, Bengt; Serafetinidis, Ioannis; Smith, Jennifer A.; Soranzo, Nicole; Speliotes, Elizabeth K.; Stahl, Eli A.; Stirrups, Kathleen; Tentolouris, Nikos; Thanopoulou, Anastasia; Torres, Mina; Traglia, Michela; Tsafantakis, Emmanouil; Javad, Sundas; Yanek, Lisa R.; Zengini, Eleni; Becker, Diane M.; Bis, Joshua C.; Brown, James B.; Adrienne Cupples, L.; Hansen, Torben; Ingelsson, Erik; Karter, Andrew J.; Lorenzo, Carlos; Mathias, Rasika A.; Norris, Jill M.; Peloso, Gina M.; Sheu, Wayne H.-H.; Toniolo, Daniela; Vaidya, Dhananjay; Varma, Rohit; Wagenknecht, Lynne E.; Boeing, Heiner; Bottinger, Erwin P.; Dedoussis, George; Deloukas, Panos; Ferrannini, Ele; Franco, Oscar H.; Franks, Paul W.; Gibbs, Richard A.; Gudnason, Vilmundur; Hamsten, Anders; Harris, Tamara B.; Hattersley, Andrew T.; Hayward, Caroline; Hofman, Albert; Jansson, Jan-Håkan; Langenberg, Claudia; Launer, Lenore J.; Levy, Daniel; Oostra, Ben A.; O'Donnell, Christopher J.; O'Rahilly, Stephen; Padmanabhan, Sandosh; Pankow, James S.; Polasek, Ozren; Province, Michael A.; Rich, Stephen S.; Ridker, Paul M.; Rudan, Igor; Schulze, Matthias B.; Smith, Blair H.; Uitterlinden, André G.; Walker, Mark; Watkins, Hugh; Wong, Tien Y.; Zeggini, Eleftheria; Laakso, Markku; Borecki, Ingrid B.; Chasman, Daniel I.; Pedersen, Oluf; Psaty, Bruce M.; Shyong Tai, E.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Waterworth, Dawn M.; Boerwinkle, Eric; Linda Kao, W. H.; Florez, Jose C.; Loos, Ruth J. F.; Wilson, James G.; Frayling, Timothy M.; Siscovick, David S.; Dupuis, Josée; Rotter, Jerome I.; Meigs, James B.; Scott, Robert A.; Goodarzi, Mark O.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthFasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=−0.09±0.01 mmol l−1, P=3.4 × 10−12), T2D risk (OR[95%CI]=0.86[0.76–0.96], P=0.010), early insulin secretion (β=−0.07±0.035 pmolinsulin mmolglucose−1, P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l−1, P=4.3 × 10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l−1, P=1.3 × 10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.Item Proinsulin Secretion Is a Persistent Feature of Type 1 Diabetes(American Diabetes Association, 2019-02) Sims, Emily K.; Bahnson, Henry T.; Nyalwidhe, Julius; Haataja, Leena; Davis, Asa K.; Speake, Cate; DiMeglio, Linda A.; Blum, Janice; Morris, Margaret A.; Mirmira, Raghavendra G.; Nadler, Jerry; Mastracci, Teresa L.; Marcovina, Santica; Qian, Wei-Jun; Yi, Lian; Swensen, Adam C.; Yip-Schneider, Michele; Schmidt, C. Max; Considine, Robert V.; Arvan, Peter; Greenbaum, Carla J.; Evans-Molina, Carmella; T1D Exchange Residual C-peptide Study Group; Pediatrics, School of MedicineOBJECTIVE: Abnormally elevated proinsulin secretion has been reported in type 2 and early type 1 diabetes when significant C-peptide is present. We questioned whether individuals with long-standing type 1 diabetes and low or absent C-peptide secretory capacity retained the ability to make proinsulin. RESEARCH DESIGN AND METHODS: C-peptide and proinsulin were measured in fasting and stimulated sera from 319 subjects with long-standing type 1 diabetes (≥3 years) and 12 control subjects without diabetes. We considered three categories of stimulated C-peptide: 1) C-peptide positive, with high stimulated values ≥0.2 nmol/L; 2) C-peptide positive, with low stimulated values ≥0.017 but <0.2 nmol/L; and 3) C-peptide <0.017 nmol/L. Longitudinal samples were analyzed from C-peptide-positive subjects with diabetes after 1, 2, and 4 years. RESULTS: Of individuals with long-standing type 1 diabetes, 95.9% had detectable serum proinsulin (>3.1 pmol/L), while 89.9% of participants with stimulated C-peptide values below the limit of detection (<0.017 nmol/L; n = 99) had measurable proinsulin. Proinsulin levels remained stable over 4 years of follow-up, while C-peptide decreased slowly during longitudinal analysis. Correlations between proinsulin with C-peptide and mixed-meal stimulation of proinsulin were found only in subjects with high stimulated C-peptide values (≥0.2 nmol/L). Specifically, increases in proinsulin with mixed-meal stimulation were present only in the group with high stimulated C-peptide values, with no increases observed among subjects with low or undetectable (<0.017 nmol/L) residual C-peptide. CONCLUSIONS: In individuals with long-duration type 1 diabetes, the ability to secrete proinsulin persists, even in those with undetectable serum C-peptide.Item Ventral frontal satiation-mediated responses to food aromas in obese and normal-weight women(American Society for Nutrition, 2014-06-02) Eiler II, William J.A.; Dzemidzic, Mario; Case, K. Rose; Armstrong, Cheryl L.H.; Mattes, Richard D.; Cyders, Melissa A.; Considine, Robert V.; Kareken, David A.; Department of Psychiatry, IU School of MedicineBACKGROUND: Sensory properties of foods promote and guide consumption in hunger states, whereas satiation should dampen the sensory activation of ingestive behaviors. Such activation may be disordered in obese individuals. OBJECTIVE: Using functional magnetic resonance imaging (fMRI), we studied regional brain responses to food odor stimulation in the sated state in obese and normal-weight individuals targeting ventral frontal regions known to be involved in coding for stimulus reward value. DESIGN: Forty-eight women (25 normal weight; 23 obese) participated in a 2-day (fed compared with fasting) fMRI study while smelling odors of 2 foods and an inedible, nonfood object. Analyses were conducted to permit an examination of both general and sensory-specific satiation (satiation effects specific to a given food). RESULTS: Normal-weight subjects showed significant blood oxygen level-dependent responses in the ventromedial prefrontal cortex (vmPFC) to food aromas compared with responses induced by the odor of an inedible object. Normal-weight subjects also showed general (but not sensory-specific) satiation effects in both the vmPFC and orbitofrontal cortex. Obese subjects showed no differential response to the aromas of food and the inedible object when fasting. Within- and between-group differences in satiation were driven largely by changes in the response to the odor of the inedible stimulus. Responses to food aromas in the obese correlated with trait negative urgency, the tendency toward negative affect-provoked impulsivity. CONCLUSIONS: Ventral frontal signaling of reward value may be disordered in obesity, with negative urgency heightening responses to food aromas. The observed nature of responses to food and nonfood stimuli suggests that future research should independently quantify each to fully understand brain reward signaling in obesity.