- Browse by Subject
Browsing by Subject "Facial bones"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Craniofacial variation and growth in the Prader-Labhart-Willi syndrome(Wiley, 1987-12) Meaney, F. John; Butler, Merlin G.; Medical and Molecular Genetics, School of MedicineA study of anthropometric variation and craniofacial growth in individuals with the Prader-Labhart-Willi syndrome (PLWS) illustrates the utility of anthropometry in clinical evaluation and research. Anthropometric measurements, including head length and breadth, minimum frontal diameter, and head circumference, were obtained on 38 PLWS individuals (21 with chromosome 15 deletions) with an age range from 2 weeks to 39 years. No anthropometric differences were found between the two chromosome subgroups. A relative deceleration in the growth of certain craniofacial dimensions (head circumference and length) is suggested by the negative correlations between age and Z-scores for the measurements. Raw values for minimum frontal diameter and head breadth were near or below the 5th percentile curve, while almost all values for head length and circumference fell within normal limits. The data support suggestions that dolichocephaly be considered an early diagnostic feature of PLWS. Furthermore, the status of narrow bifrontal diameter as a major feature of PLWS is confirmed.Item Molecular Basis for Craniofacial Phenotypes Caused by Sclerostin Deletion(Sage, 2021) Chen, J.; Yuan, X.; Pilawski, I.; Liu, X.; Delgado-Calle, J.; Bellido, T.; Turkkahraman, H.; Helms, J.A.; Medicine, School of MedicineSome genetic disorders are associated with distinctive facial features, which can aid in diagnosis. While considerable advances have been made in identifying causal genes, relatively little progress has been made toward understanding how a particular genotype results in a characteristic craniofacial phenotype. An example is sclerosteosis/van Buchem disease, which is caused by mutations in the Wnt inhibitor sclerostin (SOST). Affected patients have a high bone mass coupled with a distinctive appearance where the mandible is enlarged and the maxilla is foreshortened. Here, mice carrying a null mutation in Sost were analyzed using quantitative micro-computed tomographic (µCT) imaging and histomorphometric analyses to determine the extent to which the size and shape of craniofacial skeleton were altered. Sost-/- mice exhibited a significant increase in appositional bone growth, which increased the height and width of the mandible and reduced the diameters of foramina. In vivo fluorochrome labeling, histology, and immunohistochemical analyses indicated that excessive bone deposition in the premaxillary suture mesenchyme curtailed overall growth, leading to midfacial hypoplasia. The amount of bone extracellular matrix produced by Sost-/- cells was significantly increased; as a consequence, osteoid seams were evident throughout the facial skeleton. Collectively, these analyses revealed a remarkable fidelity between human characteristics of sclerosteosis/van Buchem disease and the Sost-/- phenotype and provide clues into the conserved role for sclerostin signaling in modulating craniofacial morphology.Item Wnt/β-catenin Signaling Controls Maxillofacial Hyperostosis(Sage, 2022) Chen, J.; Cuevas, P. L.; Dworan, J. S.; Dawid, I.; Turkkahraman, H.; Tran, K.; Delgado-Calle, J.; Bellido, T.; Gorski, J. P.; Liu, B.; Brunski, J. B.; Helms, J. A.; Orthodontics and Oral Facial Genetics, School of DentistryThe roles of Wnt/β-catenin signaling in regulating the morphology and microstructure of craniomaxillofacial (CMF) bones was explored using mice carrying a constitutively active form of β-catenin in activating Dmp1-expressing cells (e.g., daβcatOt mice). By postnatal day 24, daβcatOt mice exhibited midfacial truncations coupled with maxillary and mandibular hyperostosis that progressively worsened with age. Mechanistic insights into the basis for the hyperostotic facial phenotype were gained through molecular and cellular analyses, which revealed that constitutively activated β-catenin in Dmp1-expressing cells resulted in an increase in osteoblast number and an increased rate of mineral apposition. An increase in osteoblasts was accompanied by an increase in osteocytes, but they failed to mature. The resulting CMF bone matrix also had an abundance of osteoid, and in locations where compact lamellar bone typically forms, it was replaced by porous, woven bone. The hyperostotic facial phenotype was progressive. These findings identify for the first time a ligand-independent positive feedback loop whereby unrestrained Wnt/β-catenin signaling results in a CMF phenotype of progressive hyperostosis combined with architecturally abnormal, poorly mineralized matrix that is reminiscent of craniotubular disorders in humans.