ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Face to DNA"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Matching 3D Facial Shape to Demographic Properties by Geometric Metric Learning: A Part-Based Approach
    (IEEE, 2022-04) Mahdi, Soha Sadat; Nauwelaers, Nele; Joris, Philip; Bouritsas, Giorgos; Gong, Shunwang; Walsh, Susan; Shriver, Mark D.; Bronstein, Michael; Claes, Peter; Biology, School of Science
    Face recognition is a widely accepted biometric identifier, as the face contains a lot of information about the identity of a person. The goal of this study is to match the 3D face of an individual to a set of demographic properties (sex, age, BMI, and genomic background) that are extracted from unidentified genetic material. We introduce a triplet loss metric learner that compresses facial shape into a lower dimensional embedding while preserving information about the property of interest. The metric learner is trained for multiple facial segments to allow a global-to-local part-based analysis of the face. To learn directly from 3D mesh data, spiral convolutions are used along with a novel mesh-sampling scheme, which retains uniformly sampled points at different resolutions. The capacity of the model for establishing identity from facial shape against a list of probe demographics is evaluated by enrolling the embeddings for all properties into a support vector machine classifier or regressor and then combining them using a naive Bayes score fuser. Results obtained by a 10-fold cross-validation for biometric verification and identification show that part-based learning significantly improves the systems performance for both encoding with our geometric metric learner or with principal component analysis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University