- Browse by Subject
Browsing by Subject "FK506"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Advancing Nerve Regeneration: Translational Perspectives of Tacrolimus (FK506)(MDPI, 2023-08-14) Daeschler, Simeon C.; Feinberg, Konstantin; Harhaus, Leila; Kneser, Ulrich; Gordon, Tessa; Borschel, Gregory H.; Ophthalmology, School of MedicinePeripheral nerve injuries have far-reaching implications for individuals and society, leading to functional impairments, prolonged rehabilitation, and substantial socioeconomic burdens. Tacrolimus, a potent immunosuppressive drug known for its neuroregenerative properties, has emerged in experimental studies as a promising candidate to accelerate nerve fiber regeneration. This review investigates the therapeutic potential of tacrolimus by exploring the postulated mechanisms of action in relation to biological barriers to nerve injury recovery. By mapping both the preclinical and clinical evidence, the benefits and drawbacks of systemic tacrolimus administration and novel delivery systems for localized tacrolimus delivery after nerve injury are elucidated. Through synthesizing the current evidence, identifying practical barriers for clinical translation, and discussing potential strategies to overcome the translational gap, this review provides insights into the translational perspectives of tacrolimus as an adjunct therapy for nerve regeneration.Item The phosphatase calcineurin regulates pathological TDP-43 phosphorylation(Springer, 2016-10) Liachko, Nicole F.; Saxton, Aleen D.; McMillan, Pamela J.; Strovas, Timothy J.; Currey, Heather N.; Taylor, Laura M.; Wheeler, Jeanna M.; Oblak, Adrian L.; Ghetti, Bernardino; Montine, Thomas J.; Keene, C. Dirk; Raskind, Murray A.; Bird, Thomas D.; Kraemer, Brian C.; Pathology and Laboratory Medicine, School of MedicineDetergent insoluble inclusions of TDP-43 protein are hallmarks of the neuropathology in over 90% of amyotrophic lateral sclerosis (ALS) cases and approximately half of frontotemporal dementia (FTLD-TDP) cases. In TDP-43 proteinopathy disorders, lesions containing aggregated TDP-43 protein are extensively post-translationally modified, with phosphorylated TDP-43 (pTDP) being the most consistent and robust marker of pathological TDP-43 deposition. Abnormally phosphorylated TDP-43 has been hypothesized to mediate TDP-43 toxicity in many neurodegenerative disease models. To date several different kinases have been implicated in the genesis of pTDP, but no phosphatases have been shown to reverse pathological TDP-43 phosphorylation. We have identified the phosphatase calcineurin as an enzyme binding to and catalyzing the removal of pathological C-terminal phosphorylation of TDP-43 in vitro. In C. elegans models of TDP-43 proteinopathy, genetic elimination of calcineurin results in accumulation of excess pTDP, exacerbated motor dysfunction, and accelerated neurodegenerative changes. In cultured human cells, treatment with FK506 (tacrolimus), a calcineurin inhibitor, results in accumulation of pTDP species. Lastly, calcineurin co-localizes with pTDP in degenerating areas of the central nervous system in subjects with FTLD-TDP and ALS. Taken together these findings suggest calcineurin acts on pTDP as a phosphatase in neurons. Furthermore, patient treatment with calcineurin inhibitors may have unappreciated adverse neuropathological consequences.Item Sustained Release of Tacrolimus From a Topical Drug Delivery System Promotes Corneal Reinnervation(Association for Research in Vision and Ophthalmology (ARVO), 2022) Daeschler, Simeon C.; Mirmoeini, Kaveh; Gordon, Tessa; Chan, Katelyn; Zhang, Jennifer; Ali, Asim; Feinberg, Konstantin; Borschel, Gregory H.; Surgery, School of MedicinePurpose: Corneal nerve fibers provide sensation and maintain the epithelial renewal process. Insufficient corneal innervation can cause neurotrophic keratopathy. Here, topically delivered tacrolimus is evaluated for its therapeutic potential to promote corneal reinnervation in rats. Methods: A compartmentalized neuronal cell culture was used to determine the effect of locally delivered tacrolimus on sensory axon regeneration in vitro. The regenerating axons but not the cell bodies were exposed to tacrolimus (50 ng/mL), nerve growth factor (50 ng/mL), or a vehicle control. Axon area and length were measured after 48 hours. Then, a biodegradable nanofiber drug delivery system was fabricated via electrospinning of a tacrolimus-loaded polycarbonate-urethane polymer. Biocompatibility, degradation, drug biodistribution, and therapeutic effectiveness were tested in a rat model of neurotrophic keratopathy induced by stereotactic trigeminal nerve ablation. Results: Sensory neurons whose axons were exposed to tacrolimus regenerated significantly more and longer axons compared to vehicle-treated cultures. Trigeminal nerve ablation in rats reliably induced corneal denervation. Four weeks after denervation, rats that had received tacrolimus topically showed similar limbal innervation but a significantly higher nerve fiber density in the center of the cornea compared to the non-treated control. Topically applied tacrolimus was detectable in the ipsilateral vitreal body, the plasma, and the ipsilateral trigeminal ganglion but not in their contralateral counterparts and vital organs after 4 weeks of topical release. Conclusions: Locally delivered tacrolimus promotes axonal regeneration in vitro and corneal reinnervation in vivo with minimal systemic drug exposure. Translational relevance: Topically applied tacrolimus may provide a readily translatable approach to promote corneal reinnervation.