- Browse by Subject
Browsing by Subject "FGF-23"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia(Wiley, 2016-06) Clinkenbeard, Erica L.; Cass, Taryn A.; Ni, Pu; Hum, Julia M.; Bellido, Teresita; Allen, Matthew R.; White, Kenneth E.; Department of Medical and Molecular Genetics, School of MedicineThe transgenic and knockout (KO) animals involving Fgf23 have been highly informative in defining novel aspects of mineral metabolism, but are limited by shortened lifespan, inability of spatial/temporal FGF23 control, and infertility of the global KO. To more finely test the role of systemic and genetic influences in FGF23 production, a mouse was developed that carried a floxed ("f")-Fgf23 allele (exon 2 floxed) which demonstrated in vivo recombination when bred to global-Cre transgenic mice (eIIa-cre). Mice homozygous for the recombined allele ("Δ") had undetectable serum intact FGF23, elevated serum phosphate (p < 0.05), and increased kidney Cyp27b1 mRNA (p < 0.05), similar to global Fgf23-KO mice. To isolate cellular FGF23 responses during phosphate challenge, Fgf23(Δ/f) mice were mated with early osteoblast type Iα1 collagen 2.3-kb promoter-cre mice (Col2.3-cre) and the late osteoblast/early osteocyte Dentin matrix protein-1-cre (Dmp1-cre). Fgf23(Δ/f) /Col2.3-cre(+) and Fgf23(Δ/f) /Dmp1-cre(+) exhibited reduced baseline serum intact FGF23 versus controls. After challenge with high-phosphate diet Cre(-) mice had 2.1-fold to 2.5-fold increased serum FGF23 (p < 0.01), but Col2.3-cre(+) mice had no significant increase, and Dmp1-cre(+) mice had only a 37% increase (p < 0.01) despite prevailing hyperphosphatemia in both models. The Fgf23(Δ/f) /Col2.3-cre was bred onto the Hyp (murine X-linked hypophosphatemia [XLH] model) genetic background to test the contribution of osteoblasts and osteocytes to elevated FGF23 and Hyp disease phenotypes. Whereas Hyp mice maintained inappropriately elevated FGF23 considering their marked hypophosphatemia, Hyp/Fgf23(Δ/f) /Col2.3-cre(+) mice had serum FGF23 <4% of Hyp (p < 0.01), and this targeted restriction normalized serum phosphorus and ricketic bone disease. In summary, deleting FGF23 within early osteoblasts and osteocytes demonstrated that both cell types contribute to baseline circulating FGF23 concentrations, and that targeting osteoblasts/osteocytes for FGF23 production can modify systemic responses to changes in serum phosphate concentrations and rescue the Hyp genetic syndrome.Item Heritable and acquired disorders of phosphate metabolism: Etiologies involving FGF23 and current therapeutics(Elsevier, 2017-09) Clickenbeard, Erica L.; White, Kenneth E.; Medical and Molecular Genetics, School of MedicinePhosphate is critical for many cellular processes and structural functions, including as a key molecule for nucleic acid synthesis and energy metabolism, as well as hydroxyapatite formation in bone. Therefore it is critical to maintain tight regulation of systemic phosphate levels. Based upon its broad biological importance, disruption of normal phosphate homeostasis has detrimental effects on skeletal integrity and overall health. Investigating heritable diseases of altered phosphate metabolism has led to key discoveries underlying the regulation and systemic actions of the phosphaturic hormone Fibroblast growth factor-23 (FGF23). Both molecular and clinical studies have revealed novel targets for the development and optimization of therapies for disorders of phosphate handling. This review will focus upon the bridge between genetic discoveries involving disorders of altered FGF23 bioactivity, as well as describe how these findings have translated into pharmacologic application.Item Hyperphosphatemic Tumoral Calcinosis With Pemigatinib Use(Elsevier, 2022-07-16) Puar, Akshan; Donegan, Diane; Helft, Paul; Kuhar, Matthew; Webster, Jonathan; Rao, Megana; Econs, Michael; Medicine, School of MedicineBackground/objective: Pemigatinib, a fibroblast growth factor receptor (FGFR) 1-3 inhibitor, is a novel therapeutic approach for treating cholangiocarcinoma when an FGFR fusion or gene rearrangement is identified. Although the most reported side effect of pemigatinib is hyperphosphatemia, tumoral calcinosis with soft tissue calcifications is not widely recognized as a complication. We report a case of patient with hyperphosphatemic tumoral calcinosis on pemigatinib. Case report: A 59-year-old woman with progressive metastatic cholangiocarcinoma, despite receiving treatment with cisplatin and gemcitabine for 7 months, was found to have an FGFR2-BICC1 fusion in the tumor on next-generation sequencing. Pemigatinib was, therefore, initiated. Four months into the therapy, multiple subcutaneous nodules developed over the lower portion of her back, hips, and legs. Punch biopsies revealed deep dermal and subcutaneous calcifications. Investigations revealed elevated serum phosphorus (7.5 mg/dL), normal serum calcium (8.7 mg/dL), and elevated intact fibroblast growth factor-23 (FGF23, 1216 pg/mL; normal value <59 pg/mL) levels. Serum phosphorus levels improved with a low-phosphorus diet and sevelamer. Calcifications regressed with pemigatinib discontinuation. Discussion: Inhibition or deficiency of FGF-23 results in hyperphosphatemia and can lead to ectopic calcification. Pemigatinib, a potent inhibitor of FGFR-1-3, blocks the effect of FGF-23 leading to hyperphosphatemia and tumoral calcinosis as observed in our case. Treatment is aimed primarily at lowering serum phosphate levels through dietary restriction or phosphate binders; however, the regression of tumoral calcinosis can occur with pemigatinib cessation, as seen in this case. Conclusion: As the use of FGFR 1-3 inhibitors becomes more prevalent, we aim to raise attention to the potential side effects of tumoral calcinosis.Item Regulation of Fibroblast Growth Factor 23 by Iron, EPO, and HIF(Springer, 2019-03) Wheeler, Jonathan A.; Clinkenbeard, Erica L.; Medical and Molecular Genetics, School of MedicinePurpose of review: Fibroblast growth factor-23 (FGF23) is the key hormone produced in bone critical for phosphate homeostasis. Elevated serum phosphorus and 1,25dihydroxyvitaminD stimulates FGF23 production to promote renal phosphate excretion and decrease 1,25dihydroxyvitaminD synthesis. Thus completing the feedback loop and suppressing FGF23. Unexpectedly, studies of common and rare heritable disorders of phosphate handling identified links between iron and FGF23 demonstrating novel regulation outside the phosphate pathway. Recent Findings: Iron deficiency combined with an FGF23 cleavage mutation was found to induce the autosomal dominant hypophosphatemic rickets phenotype. Physiological responses to iron deficiency, such as erythropoietin production as well as hypoxia inducible factor activation, have been indicated in regulating FGF23. Additionally, specific iron formulations, used to treat iron deficiency, alter post-translational processing thereby shifting FGF23 protein secretion. Summary: Molecular and clinical studies revealed that iron deficiency, through several mechanisms, alters FGF23 at the transcriptional and post-translational level. This review will focus upon the novel discoveries elucidated between iron, its regulators, and their influence on FGF23 bioactivity.Item Systemic Control of Bone Homeostasis by FGF23 Signaling(Springer, 2016-03-01) Clinkenbeard, Erica L.; White, Kenneth E.; Department of Medical & Molecular Genetics, IU School of MedicineThe regulation of phosphate metabolism as an influence on bone homeostasis is profound. Recent advances in understanding the systemic control of Fibroblast growth factor-23 (FGF23) has uncovered novel effectors of endocrine feedback loops for calcium, phosphate, and vitamin D balance that interact with 'traditional' feedback loops for mineral metabolism. Not only are these findings re-shaping research studying phosphate handling and skeletal interactions, they have provided new therapeutic interventions. Emerging data support that the control of FGF23 production in bone and its circulating concentrations is a multi-layered process, with some influences affecting FGF23 transcription and some post-translational modification of the secreted, bioactive protein. Additionally, the actions of FGF23 on its target tissues via its co-receptor αKlotho, are subject to regulatory events just coming to light. The recent findings of systemic influences on circulating FGF23 and the downstream manifestations on bone homeostasis will be reviewed herein.