- Browse by Subject
Browsing by Subject "Expression quantitative trait loci"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Association of genetic variants of TMEM135 and PEX5 in the peroxisome pathway with cutaneous melanoma-specific survival(AME Publishing, 2021-03) Wang, Haijiao; Liu, Hongliang; Dai, Wei; Luo, Sheng; Amos, Christopher I.; Lee, Jeffrey E.; Li, Xin; Yue, Ying; Nan, Hongmei; Wei, Qingyi; Epidemiology, School of Public HealthBackground: Peroxisomes are ubiquitous and dynamic organelles that are involved in the metabolism of reactive oxygen species (ROS) and lipids. However, whether genetic variants in the peroxisome pathway genes are associated with survival in patients with melanoma has not been established. Therefore, our aim was to identify additional genetic variants in the peroxisome pathway that may provide new prognostic biomarkers for cutaneous melanoma (CM). Methods: We assessed the associations between 8,397 common single-nucleotide polymorphisms (SNPs) in 88 peroxisome pathway genes and CM disease-specific survival (CMSS) in a two-stage analysis. For the discovery, we extracted the data from a published genome-wide association study from The University of Texas MD Anderson Cancer Center (MDACC). We then replicated the results in another dataset from the Nurse Health Study (NHS)/Health Professionals Follow-up Study (HPFS). Results: Overall, 95 (11.1%) patients in the MDACC dataset and 48 (11.7%) patients in the NHS/HPFS dataset died of CM. We found 27 significant SNPs in the peroxisome pathway genes to be associated with CMSS in both datasets after multiple comparison correction using the Bayesian false-discovery probability method. In stepwise Cox proportional hazards regression analysis, with adjustment for other covariates and previously published SNPs in the MDACC dataset, we identified 2 independent SNPs (TMEM135 rs567403 C>G and PEX5 rs7969508 A>G) that predicted CMSS (P=0.003 and 0.031, respectively, in an additive genetic model). The expression quantitative trait loci analysis further revealed that the TMEM135 rs567403 GG and PEX5 rs7969508 GG genotypes were associated with increased and decreased levels of mRNA expression of their genes, respectively. Conclusions: Once our findings are replicated by other investigators, these genetic variants may serve as novel biomarkers for the prediction of survival in patients with CM.Item Novel Genetic Variants of ALG6 and GALNTL4 of the Glycosylation Pathway Predict Cutaneous Melanoma-Specific Survival(MDPI, 2020-01-24) Zhou, Bingrong; Zhao, Yu Chen; Liu, Hongliang; Luo, Sheng; Amos, Christopher I.; Lee, Jeffrey E.; Li, Xin; Nan, Hongmei; Wei, Qingyi; Epidemiology, School of Public HealthBecause aberrant glycosylation is known to play a role in the progression of melanoma, we hypothesize that genetic variants of glycosylation pathway genes are associated with the survival of cutaneous melanoma (CM) patients. To test this hypothesis, we used a Cox proportional hazards regression model in a single-locus analysis to evaluate associations between 34,096 genetic variants of 227 glycosylation pathway genes and CM disease-specific survival (CMSS) using genotyping data from two previously published genome-wide association studies. The discovery dataset included 858 CM patients with 95 deaths from The University of Texas MD Anderson Cancer Center, and the replication dataset included 409 CM patients with 48 deaths from Harvard University nurse/physician cohorts. In the multivariable Cox regression analysis, we found that two novel single-nucleotide polymorphisms (SNPs) (ALG6 rs10889417 G>A and GALNTL4 rs12270446 G>C) predicted CMSS, with an adjusted hazards ratios of 0.60 (95% confidence interval = 0.44–0.83 and p = 0.002) and 0.66 (0.52–0.84 and 0.004), respectively. Subsequent expression quantitative trait loci (eQTL) analysis revealed that ALG6 rs10889417 was associated with mRNA expression levels in the cultured skin fibroblasts and whole blood cells and that GALNTL4 rs12270446 was associated with mRNA expression levels in the skin tissues (all p < 0.05). Our findings suggest that, once validated by other large patient cohorts, these two novel SNPs in the glycosylation pathway genes may be useful prognostic biomarkers for CMSS, likely through modulating their gene expression.