ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Experimental models of disease"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cardiomyocyte-restricted MIAT deletion is sufficient to protect against murine myocardial infarction
    (Springer Nature, 2025-02-20) Hayasaka, Taiki; Kawaguchi, Satoshi; Sepúlveda, Marisa N.; Teoh, Jian-Peng; Moukette, Bruno; Aonuma, Tatsuya; Madhur, Meena S.; Desai, Ankit A.; Liangpunsakul, Suthat; Conway, Simon J.; Kim, Il-Man; Anatomy, Cell Biology and Physiology, School of Medicine
    Myocardial infarction-associated transcript (MIAT), an intergenic long noncoding RNA (lncRNA), is conserved between rodents and humans and is directly linked to maladaptive cardiac remodeling in both patients and mouse models with various forms of heart failure (HF). We previously reported attenuation of cardiac stress, apoptosis, and fibrosis in a murine model of myocardial infarction (MI) with global MIAT ablation. Our transcriptomic profiling and mechanistic studies further revealed MIAT-induced activation of maladaptive genes, such as Hoxa4, Fmo2, Lrrn4, Marveld3, and Fat4. However, the source of MIAT and its contribution to MI and HF remain unknown. In this study, we generate a novel cardiomyocyte (CM)-specific MIAT conditional knockout mouse model, which exhibits improved cardiac function after MI. We further report that CM-specific MIAT ablation is sufficient to reduce cardiac damage, apoptosis, and fibrosis following chronic MI. Mechanistically, CM-specific MIAT deletion in mice leads to decreased expression of proapoptotic and pathological profibrotic genes, such as p53, Bak1, Col3a1, Col6a1, Postn, and Snail1 after chronic MI. These results enable us to begin to dissect cell-specific contributions to MIAT signaling and bolster the idea that MIAT plays a direct pathological role in CMs after MI.
  • Loading...
    Thumbnail Image
    Item
    Defective BVES-mediated feedback control of cAMP in muscular dystrophy
    (Springer Nature, 2023-03-30) Li, Haiwen; Wang, Peipei; Zhang, Chen; Zuo, Yuanbojiao; Zhou, Yuan; Han, Renzhi; Pediatrics, School of Medicine
    Biological processes incorporate feedback mechanisms to enable positive and/or negative regulation. cAMP is an important second messenger involved in many aspects of muscle biology. However, the feedback mechanisms for the cAMP signaling control in skeletal muscle are largely unknown. Here we show that blood vessel epicardial substance (BVES) is a negative regulator of adenylyl cyclase 9 (ADCY9)-mediated cAMP signaling involved in maintaining muscle mass and function. BVES deletion in mice reduces muscle mass and impairs muscle performance, whereas virally delivered BVES expressed in Bves-deficient skeletal muscle reverses these defects. BVES interacts with and negatively regulates ADCY9’s activity. Disruption of BVES-mediated control of cAMP signaling leads to an increased protein kinase A (PKA) signaling cascade, thereby promoting FoxO-mediated ubiquitin proteasome degradation and autophagy initiation. Our study reveals that BVES functions as a negative feedback regulator of ADCY9-cAMP signaling in skeletal muscle, playing an important role in maintaining muscle homeostasis.
  • Loading...
    Thumbnail Image
    Item
    Depdc5 deficiency exacerbates alcohol-induced hepatic steatosis via suppression of PPARα pathway
    (Springer Nature, 2021-07-15) Xu, Lin; Zhang, Xinge; Xin, Yue; Ma, Jie; Yang, Chenyan; Zhang, Xi; Hou, Guoqing; Dong, Xiaocheng Charlie; Sun, Zhaoli; Xiong, Xiwen; Cao, Xuan; Biochemistry and Molecular Biology, School of Medicine
    Alcohol-related liver disease (ALD), a condition caused by alcohol overconsumption, occurs in three stages of liver injury including steatosis, hepatitis, and cirrhosis. DEP domain-containing protein 5 (DEPDC5), a component of GAP activities towards Rags 1 (GATOR1) complex, is a repressor of amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. In the current study, we found that aberrant activation of mTORC1 was likely attributed to the reduction of DEPDC5 in the livers of ethanol-fed mice or ALD patients. To further define the in vivo role of DEPDC5 in ALD development, we generated Depdc5 hepatocyte-specific knockout mouse model (Depdc5-LKO) in which mTORC1 pathway was constitutively activated through loss of the inhibitory effect of GATOR1. Hepatic Depdc5 ablation leads to mild hepatomegaly and liver injury and protects against diet-induced liver steatosis. In contrast, ethanol-fed Depdc5-LKO mice developed severe hepatic steatosis and inflammation. Pharmacological intervention with Torin 1 suppressed mTORC1 activity and remarkably ameliorated ethanol-induced hepatic steatosis and inflammation in both control and Depdc5-LKO mice. The pathological effect of sustained mTORC1 activity in ALD may be attributed to the suppression of peroxisome proliferator activated receptor α (PPARα), the master regulator of fatty acid oxidation in hepatocytes, because fenofibrate (PPARα agonist) treatment reverses ethanol-induced liver steatosis and inflammation in Depdc5-LKO mice. These findings provide novel insights into the in vivo role of hepatic DEPDC5 in the development of ALD.
  • Loading...
    Thumbnail Image
    Item
    eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice
    (Springer Nature, 2019-12-09) Li, Jie; Li, Xinle; Liu, Daquan; Hamamura, Kazunori; Wan, Qiaoqiao; Na, Sungsoo; Yokota, Hiroki; Zhang, Ping; Biomedical Engineering, School of Engineering and Technology
    Bone loss in postmenopausal osteoporosis is induced chiefly by an imbalance of bone-forming osteoblasts and bone-resorbing osteoclasts. Salubrinal is a synthetic compound that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Phosphorylation of eIF2α alleviates endoplasmic reticulum (ER) stress, which may activate autophagy. We hypothesized that eIF2α signaling regulates bone homeostasis by promoting autophagy in osteoblasts and inhibiting osteoclast development. To test the hypothesis, we employed salubrinal to elevate the phosphorylation of eIF2α in an ovariectomized (OVX) mouse model and cell cultures. In the OVX model, salubrinal prevented abnormal expansion of rough ER and decreased the number of acidic vesiculars. It regulated ER stress-associated signaling molecules such as Bip, p-eIF2α, ATF4 and CHOP, and promoted autophagy of osteoblasts via regulation of eIF2α, Atg7, LC3, and p62. Salubrinal markedly alleviated OVX-induced symptoms such as reduction of bone mineral density and bone volume fraction. In primary bone-marrow-derived cells, salubrinal increased the differentiation of osteoblasts, and decreased the formation of osteoclasts by inhibiting nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Live cell imaging and RNA interference demonstrated that suppression of osteoclastogenesis is in part mediated by Rac1 GTPase. Collectively, this study demonstrates that ER stress-autophagy axis plays an important role in OVX mice. Bone-forming osteoblasts are restored by maintaining phosphorylation of eIF2α, and bone-resorbing osteoclasts are regulated by inhibiting NFATc1 and Rac1 GTPase.
  • Loading...
    Thumbnail Image
    Item
    Experimental and theoretical model of microvascular network remodeling and blood flow redistribution following minimally invasive microvessel laser ablation
    (Springer Nature, 2024-04-16) Gruionu, Gabriel; Baish, James; McMahon, Sean; Blauvelt, David; Gruionu, Lucian G.; Lenco, Mara Onita; Vakoc, Benjamin J.; Padera, Timothy P.; Munn, Lance L.; Medicine, School of Medicine
    Overly dense microvascular networks are treated by selective reduction of vascular elements. Inappropriate manipulation of microvessels could result in loss of host tissue function or a worsening of the clinical problem. Here, experimental, and computational models were developed to induce blood flow changes via selective artery and vein laser ablation and study the compensatory collateral flow redistribution and vessel diameter remodeling. The microvasculature was imaged non-invasively by bright-field and multi-photon laser microscopy, and optical coherence tomography pre-ablation and up to 30 days post-ablation. A theoretical model of network remodeling was developed to compute blood flow and intravascular pressure and identify vessels most susceptible to changes in flow direction. The skin microvascular remodeling patterns were consistent among the five specimens studied. Significant remodeling occurred at various time points, beginning as early as days 1–3 and continuing beyond day 20. The remodeling patterns included collateral development, venous and arterial reopening, and both outward and inward remodeling, with variations in the time frames for each mouse. In a representative specimen, immediately post-ablation, the average artery and vein diameters increased by 14% and 23%, respectively. At day 20 post-ablation, the maximum increases in arterial and venous diameters were 2.5× and 3.3×, respectively. By day 30, the average artery diameter remained 11% increased whereas the vein diameters returned to near pre-ablation values. Some arteries regenerated across the ablation sites via endothelial cell migration, while veins either reconnected or rerouted flow around the ablation site, likely depending on local pressure driving forces. In the intact network, the theoretical model predicts that the vessels that act as collaterals after flow disruption are those most sensitive to distant changes in pressure. The model results correlate with the post-ablation microvascular remodeling patterns.
  • Loading...
    Thumbnail Image
    Item
    Female and male mice have differential longterm cardiorenal outcomes following a matched degree of ischemia–reperfusion acute kidney injury
    (Springer Nature, 2022-01-12) Soranno, Danielle E.; Baker, Peter, II.; Kirkbride-Romeo, Lara; Wennersten, Sara A.; Ding, Kathy; Keith, Brysen; Cavasin, Maria A.; Altmann, Christopher; Bagchi, Rushita A.; Haefner, Korey R.; Montford, John; Gist, Katja M.; Vergnes, Laurent; Reue, Karen; He, Zhibin; Elajaili, Hanan; Okamura, Kayo; Nozik, Eva; McKinsey, Timothy A.; Faubel, Sarah; Pediatrics, School of Medicine
    Acute kidney injury (AKI) is common in patients, causes systemic sequelae, and predisposes patients to long-term cardiovascular disease. To date, studies of the effects of AKI on cardiovascular outcomes have only been performed in male mice. We recently demonstrated that male mice developed diastolic dysfunction, hypertension and reduced cardiac ATP levels versus sham 1 year after AKI. The effects of female sex on long-term cardiac outcomes after AKI are unknown. Therefore, we examined the 1-year cardiorenal outcomes following a single episode of bilateral renal ischemia–reperfusion injury in female C57BL/6 mice using a model with similar severity of AKI and performed concomitantly to recently published male cohorts. To match the severity of AKI between male and female mice, females received 34 min of ischemia time compared to 25 min in males. Serial renal function, echocardiograms and blood pressure assessments were performed throughout the 1-year study. Renal histology, and cardiac and plasma metabolomics and mitochondrial function in the heart and kidney were evaluated at 1 year. Measured glomerular filtration rates (GFR) were similar between male and female mice throughout the 1-year study period. One year after AKI, female mice had preserved diastolic function, normal blood pressure, and preserved levels of cardiac ATP. Compared to males, females demonstrated pathway enrichment in arginine metabolism and amino acid related energy production in both the heart and plasma, and glutathione in the plasma. Cardiac mitochondrial respiration in Complex I of the electron transport chain demonstrated improved mitochondrial function in females compared to males, regardless of AKI or sham. This is the first study to examine the long-term cardiac effects of AKI on female mice and indicate that there are important sex-related cardiorenal differences. The role of female sex in cardiovascular outcomes after AKI merits further investigation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University