- Browse by Subject
Browsing by Subject "Exome"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Exome Sequencing Identifies Candidate Genetic Modifiers of Syndromic and Familial Thoracic Aortic Aneurysm Severity(Springer Nature, 2017-08) Landis, Benjamin J.; Schubert, Jeffrey A.; Lai, Dongbing; Jegga, Anil G.; Shikany, Amy R.; Foroud, Tatiana; Ware, Stephanie M.; Hinton, Robert B.; Pediatrics, School of MedicineThoracic aortic aneurysm (TAA) is a genetic disease predisposing to aortic dissection. It is important to identify the genetic modifiers controlling penetrance and expressivity to improve clinical prognostication. Exome sequencing was performed in 27 subjects with syndromic or familial TAA presenting with extreme phenotypes (15 with severe TAA; 12 with mild or absent TAA). Family-based analysis of a subset of the cohort identified variants, genes, and pathways segregating with TAA severity among three families. A rare missense variant in ADCK4 (p.Arg63Trp) segregated with mild TAA in each family. Genes and pathways identified in families were further investigated in the entire cohort using the optimal unified sequence kernel association test, finding significance for the gene COL15A1 (p = 0.025) and the retina homeostasis pathway (p = 0.035). Thus, we identified candidate genetic modifiers of TAA severity by exome-based study of extreme phenotypes, which may lead to improved risk stratification and development of new medical therapies.Item Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease(American Association for the Advancement of Science, 2018-01-10) Hui, Ken Y.; Fernandez-Hernandez, Heriberto; Hu, Jianzhong; Schaffner, Adam; Pankratz, Nathan; Hsu, Nai-Yun; Chuang, Ling-Shiang; Carmi, Shai; Villaverde, Nicole; Li, Xianting; Rivas, Manual; Levine, Adam P.; Bao, Xiuliang; Labrias, Philippe R.; Haritunians, Talin; Ruane, Darren; Gettler, Kyle; Chen, Ernie; Li, Dalin; Schiff, Elena R.; Pontikos, Nikolas; Barzilai, Nir; Brant, Steven R.; Bressman, Susan; Cheifetz, Adam S.; Clark, Lorraine N.; Daly, Mark J.; Desnick, Robert J.; Duerr, Richard H.; Katz, Seymour; Lencz, Todd; Myers, Richard H.; Ostrer, Harry; Ozelius, Laurie; Payami, Haydeh; Peter, Yakov; Rioux, John D.; Segal, Anthony W.; Scott, William K.; Silverberg, Mark S.; Vance, Jeffery M.; Ubarretxena-Belandia, Iban; Foroud, Tatiana; Atzmon, Gil; Pe’er, Itsik; Ioannou, Yiannis; McGovern, Dermot P.B.; Yue, Zhenyu; Schadt, Eric E.; Cho, Judy H.; Peter, Inga; Medical and Molecular Genetics, School of MedicineCrohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.Item Genetic Causes of Cardiomyopathy in Children: First Results From the Pediatric Cardiomyopathy Genes Study(American Heart Association, 2021-05-04) Ware, Stephanie M.; Wilkinson, James D.; Tariq, Muhammad; Schubert, Jeffrey A.; Sridhar, Arthi; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Webber, Steven A.; Dodd, Debra A.; Everitt, Melanie D.; Kantor, Paul F.; Addonizio, Linda J.; Jefferies, John L.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Chung, Wendy K.; Lee, Teresa; Towbin, Jeffrey A.; Lal, Ashwin K.; Bhatnagar, Surbhi; Aronow, Bruce; Dexheimer, Phillip J.; Martin, Lisa J.; Miller, Erin M.; Sleeper, Lynn A.; Razoky, Hiedy; Czachor, Jason; Lipshultz, Steven E.; Pediatrics, School of MedicinePediatric cardiomyopathy is a genetically heterogeneous disease with substantial morbidity and mortality. Current guidelines recommend genetic testing in children with hypertrophic, dilated, or restrictive cardiomyopathy, but practice variations exist. Robust data on clinical testing practices and diagnostic yield in children are lacking. This study aimed to identify the genetic causes of cardiomyopathy in children and to investigate clinical genetic testing practices. Methods and Results Children with familial or idiopathic cardiomyopathy were enrolled from 14 institutions in North America. Probands underwent exome sequencing. Rare sequence variants in 37 known cardiomyopathy genes were assessed for pathogenicity using consensus clinical interpretation guidelines. Of the 152 enrolled probands, 41% had a family history of cardiomyopathy. Of 81 (53%) who had undergone clinical genetic testing for cardiomyopathy before enrollment, 39 (48%) had a positive result. Genetic testing rates varied from 0% to 97% between sites. A positive family history and hypertrophic cardiomyopathy subtype were associated with increased likelihood of genetic testing (P=0.005 and P=0.03, respectively). A molecular cause was identified in an additional 21% of the 63 children who did not undergo clinical testing, with positive results identified in both familial and idiopathic cases and across all phenotypic subtypes. Conclusions A definitive molecular genetic diagnosis can be made in a substantial proportion of children for whom the cause and heritable nature of their cardiomyopathy was previously unknown. Practice variations in genetic testing are great and should be reduced. Improvements can be made in comprehensive cardiac screening and predictive genetic testing in first-degree relatives. Overall, our results support use of routine genetic testing in cases of both familial and idiopathic cardiomyopathy.Item Genetic Evaluation of Inpatient Neonatal and Infantile Congenital Heart Defects: New Findings and Review of the Literature(MDPI, 2021-08-14) Helm, Benjamin M.; Landis, Benjamin J.; Ware, Stephanie M.; Medical and Molecular Genetics, School of MedicineThe use of clinical genetics evaluations and testing for infants with congenital heart defects (CHDs) is subject to practice variation. This single-institution cross-sectional study of all inpatient infants with severe CHDs evaluated 440 patients using a cardiovascular genetics service (2014-2019). In total, 376 (85.5%) had chromosome microarray (CMA), of which 55 (14.6%) were diagnostic in syndromic (N = 35) or isolated (N = 20) presentations. Genetic diagnoses were made in all CHD classes. Diagnostic yield was higher in syndromic appearing infants, but geneticists' dysmorphology exams lacked complete sensitivity and 6.5% of isolated CHD cases had diagnostic CMA. Interestingly, diagnostic results (15.8%) in left ventricular outflow tract obstruction (LVOTO) defects occurred most often in patients with isolated CHD. Geneticists' evaluations were particularly important for second-tier molecular testing (10.5% test-specific yield), bringing the overall genetic testing yield to 17%. We assess these results in the context of previous studies. Cumulative evidence provides a rationale for comprehensive, standardized genetic evaluation in infants with severe CHDs regardless of lesion or extracardiac anomalies because genetic diagnoses that impact care are easily missed. These findings support routine CMA testing in infants with severe CHDs and underscore the importance of copy-number analysis with newer testing strategies such as exome and genome sequencing.Item Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility(Nature Publishing Group, 2015-01-29) Wessel, Jennifer; Chu, Audrey Y.; Willems, Sara M.; Wang, Shuai; Yaghootkar, Hanieh; Brody, Jennifer A.; Dauriz, Marco; Hivert, Marie-France; Raghavan, Sridharan; Lipovich, Leonard; Hidalgo, Bertha; Fox, Keolu; Huffman, Jennifer E.; An, Ping; Lu, Yingchang; Rasmussen-Torvik, Laura J.; Grarup, Niels; Ehm, Margaret G.; Li, Li; Baldridge, Abigail S.; Stančáková, Alena; Abrol, Ravinder; Besse, Céline; Boland, Anne; Bork-Jensen, Jette; Fornage, Myriam; Freitag, Daniel F.; Garcia, Melissa E.; Guo, Xiuqing; Hara, Kazuo; Isaacs, Aaron; Jakobsdottir, Johanna; Lange, Leslie A.; Layton, Jill C.; Li, Man; Hua Zhao, Jing; Meidtner, Karina; Morrison, Alanna C.; Nalls, Mike A.; Peters, Marjolein J.; Sabater-Lleal, Maria; Schurmann, Claudia; Silveira, Angela; Smith, Albert V.; Southam, Lorraine; Stoiber, Marcus H.; Strawbridge, Rona J.; Taylor, Kent D.; Varga, Tibor V.; Allin, Kristine H.; Amin, Najaf; Aponte, Jennifer L.; Aung, Tin; Barbieri, Caterina; Bihlmeyer, Nathan A.; Boehnke, Michael; Bombieri, Cristina; Bowden, Donald W.; Burns, Sean M.; Chen, Yuning; Chen, Yii-DerI; Cheng, Ching-Yu; Correa, Adolfo; Czajkowski, Jacek; Dehghan, Abbas; Ehret, Georg B.; Eiriksdottir, Gudny; Escher, Stefan A.; Farmaki, Aliki-Eleni; Frånberg, Mattias; Gambaro, Giovanni; Giulianini, Franco; Goddard, William A.; Goel, Anuj; Gottesman, Omri; Grove, Megan L.; Gustafsson, Stefan; Hai, Yang; Hallmans, Göran; Heo, Jiyoung; Hoffmann, Per; Ikram, Mohammad K.; Jensen, Richard A.; Jørgensen, Marit E.; Jørgensen, Torben; Karaleftheri, Maria; Khor, Chiea C.; Kirkpatrick, Andrea; Kraja, Aldi T.; Kuusisto, Johanna; Lange, Ethan M.; Lee, I. T.; Lee, Wen-Jane; Leong, Aaron; Liao, Jiemin; Liu, Chunyu; Liu, Yongmei; Lindgren, Cecilia M.; Linneberg, Allan; Malerba, Giovanni; Mamakou, Vasiliki; Marouli, Eirini; Maruthur, Nisa M.; Matchan, Angela; McKean-Cowdin, Roberta; McLeod, Olga; Metcalf, Ginger A.; Mohlke, Karen L.; Muzny, Donna M.; Ntalla, Ioanna; Palmer, Nicholette D.; Pasko, Dorota; Peter, Andreas; Rayner, Nigel W.; Renström, Frida; Rice, Ken; Sala, Cinzia F.; Sennblad, Bengt; Serafetinidis, Ioannis; Smith, Jennifer A.; Soranzo, Nicole; Speliotes, Elizabeth K.; Stahl, Eli A.; Stirrups, Kathleen; Tentolouris, Nikos; Thanopoulou, Anastasia; Torres, Mina; Traglia, Michela; Tsafantakis, Emmanouil; Javad, Sundas; Yanek, Lisa R.; Zengini, Eleni; Becker, Diane M.; Bis, Joshua C.; Brown, James B.; Adrienne Cupples, L.; Hansen, Torben; Ingelsson, Erik; Karter, Andrew J.; Lorenzo, Carlos; Mathias, Rasika A.; Norris, Jill M.; Peloso, Gina M.; Sheu, Wayne H.-H.; Toniolo, Daniela; Vaidya, Dhananjay; Varma, Rohit; Wagenknecht, Lynne E.; Boeing, Heiner; Bottinger, Erwin P.; Dedoussis, George; Deloukas, Panos; Ferrannini, Ele; Franco, Oscar H.; Franks, Paul W.; Gibbs, Richard A.; Gudnason, Vilmundur; Hamsten, Anders; Harris, Tamara B.; Hattersley, Andrew T.; Hayward, Caroline; Hofman, Albert; Jansson, Jan-Håkan; Langenberg, Claudia; Launer, Lenore J.; Levy, Daniel; Oostra, Ben A.; O'Donnell, Christopher J.; O'Rahilly, Stephen; Padmanabhan, Sandosh; Pankow, James S.; Polasek, Ozren; Province, Michael A.; Rich, Stephen S.; Ridker, Paul M.; Rudan, Igor; Schulze, Matthias B.; Smith, Blair H.; Uitterlinden, André G.; Walker, Mark; Watkins, Hugh; Wong, Tien Y.; Zeggini, Eleftheria; Laakso, Markku; Borecki, Ingrid B.; Chasman, Daniel I.; Pedersen, Oluf; Psaty, Bruce M.; Shyong Tai, E.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Waterworth, Dawn M.; Boerwinkle, Eric; Linda Kao, W. H.; Florez, Jose C.; Loos, Ruth J. F.; Wilson, James G.; Frayling, Timothy M.; Siscovick, David S.; Dupuis, Josée; Rotter, Jerome I.; Meigs, James B.; Scott, Robert A.; Goodarzi, Mark O.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthFasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=−0.09±0.01 mmol l−1, P=3.4 × 10−12), T2D risk (OR[95%CI]=0.86[0.76–0.96], P=0.010), early insulin secretion (β=−0.07±0.035 pmolinsulin mmolglucose−1, P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l−1, P=4.3 × 10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l−1, P=1.3 × 10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.Item Reply(Wiley, 2016-02) Nho, Kwangsik; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, IU School of MedicineItem Reply: To PMID 25559091(Wiley Blackwell (John Wiley & Sons), 2015-11) Nho, Kwangsik; Farrer, Lindsay A.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, IU School of MedicineItem Systematic rare variant analyses identify RAB32 as a susceptibility gene for familial Parkinson's disease(Springer Nature, 2024) Hop, Paul J.; Lai, Dongbing; Keagle, Pamela J.; Baron, Desiree M.; Kenna, Brendan J.; Kooyman, Maarten; Shankaracharya; Halter, Cheryl; Straniero, Letizia; Asselta, Rosanna; Bonvegna, Salvatore; Soto-Beasley, Alexandra I.; Project MinE ALS Sequencing Consortium; Wszolek, Zbigniew K.; Uitti, Ryan J.; Isaias, Ioannis Ugo; Pezzoli, Gianni; Ticozzi, Nicola; Ross, Owen A.; Veldink, Jan H.; Foroud, Tatiana M.; Kenna, Kevin P.; Landers, John E.; Medical and Molecular Genetics, School of MedicineDespite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk.Item The genetic architecture of pediatric cardiomyopathy(Elsevier, 2022) Ware, Stephanie M.; Bhatnagar, Surbhi; Dexheimer, Phillip J.; Wilkinson, James D.; Sridhar, Arthi; Fan, Xiao; Shen, Yufeng; Tariq, Muhammad; Schubert, Jeffrey A.; Colan, Steven D.; Shi, Ling; Canter, Charles E.; Hsu, Daphne T.; Bansal, Neha; Webber, Steven A.; Everitt, Melanie D.; Kantor, Paul F.; Rossano, Joseph W.; Pahl, Elfriede; Rusconi, Paolo; Lee, Teresa M.; Towbin, Jeffrey A.; Lal, Ashwin K.; Chung, Wendy K.; Miller, Erin M.; Aronow, Bruce; Martin, Lisa J.; Lipshultz, Steven E.; Pediatric Cardiomyopathy Registry Study Group; Pediatrics, School of MedicineTo understand the genetic contribution to primary pediatric cardiomyopathy, we performed exome sequencing in a large cohort of 528 children with cardiomyopathy. Using clinical interpretation guidelines and targeting genes implicated in cardiomyopathy, we identified a genetic cause in 32% of affected individuals. Cardiomyopathy sub-phenotypes differed by ancestry, age at diagnosis, and family history. Infants < 1 year were less likely to have a molecular diagnosis (p < 0.001). Using a discovery set of 1,703 candidate genes and informatic tools, we identified rare and damaging variants in 56% of affected individuals. We see an excess burden of damaging variants in affected individuals as compared to two independent control sets, 1000 Genomes Project (p < 0.001) and SPARK parental controls (p < 1 × 10-16). Cardiomyopathy variant burden remained enriched when stratified by ancestry, variant type, and sub-phenotype, emphasizing the importance of understanding the contribution of these factors to genetic architecture. Enrichment in this discovery candidate gene set suggests multigenic mechanisms underlie sub-phenotype-specific causes and presentations of cardiomyopathy. These results identify important information about the genetic architecture of pediatric cardiomyopathy and support recommendations for clinical genetic testing in children while illustrating differences in genetic architecture by age, ancestry, and sub-phenotype and providing rationale for larger studies to investigate multigenic contributions.Item Whole exome sequencing to identify genetic causes of short stature(S. Karger AG, 2014) Guo, Michael H.; Shen, Yiping; Walvoord, Emily C.; Miller, Timothy C.; Moon, Jennifer E.; Hirschhorn, Joel N.; Dauber, Andrew; Department of Pediatrics, IU School of MedicineBACKGROUND/AIMS: Short stature is a common reason for presentation to pediatric endocrinology clinics. However, for most patients, no cause for the short stature can be identified. As genetics plays a strong role in height, we sought to identify known and novel genetic causes of short stature. METHODS: We recruited 14 children with severe short stature of unknown etiology. We conducted whole exome sequencing of the patients and their family members. We used an analysis pipeline to identify rare non-synonymous genetic variants that cause the short stature. RESULTS: We identified a genetic cause of short stature in 5 of the 14 patients. This included cases of floating-harbor syndrome, Kenny-Caffey syndrome, the progeroid form of Ehlers-Danlos syndrome, as well as 2 cases of the 3-M syndrome. For the remaining patients, we have generated lists of candidate variants. CONCLUSIONS: Whole exome sequencing can help identify genetic causes of short stature in the context of defined genetic syndromes, but may be less effective in identifying novel genetic causes of short stature in individual families. Utilized in the clinic, whole exome sequencing can provide clinically relevant diagnoses for these patients. Rare syndromic causes of short stature may be underrecognized and underdiagnosed in pediatric endocrinology clinics.