- Browse by Subject
Browsing by Subject "Exhaustion"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Automatic analysis of treadmill running to estimate times to fatigue and exhaustion in rodents(PeerJ, 2018-07-06) Zaretsky, Dmitry V.; Kline, Hannah; Zaretskaia, Maria V.; Rusyniak, Daniel E.; Emergency Medicine, School of MedicineIntroduction: The determination of fatigue and exhaustion in experimental animals is complicated by the subjective nature of the measurement. Typically, it requires an observer to watch exercising animals, e.g. rats running on the treadmill, and to identify the time of the event. In this study, we hypothesized that automatic analysis of the time-averaged position of a rat on a treadmill could be an objective way for estimating times to fatigue and exhaustion. To test this hypothesis, we compared these times measured by a human observer to the results of an automated video tracking system. Methods: Rats, previously familiarized to running on the treadmill, ran at a fixed speed with zero incline, until exhaustion. The experiments were performed at either room temperature (24 °C) or in a hot environment (32 °C). Each experiment was video recorded. A trained observer estimated the times to fatigue and exhaustion. Then, video tracking software was used to determine the position of the animals on the treadmill belt. The times to fatigue and exhaustion were determined, based on the position on the treadmill using predefined criteria. Results: Manual scores and the average position on the treadmill had significant correlation. Both the observer and the automated video tracking determined that exercise in a hot environment, compared with the exercise at room temperature, results in shorter times to exhaustion and fatigue. Also, estimates of times made by the observer and the automated video tracking were not statistically different from each other. Discussion: A similarity between the estimates of times to fatigue and exhaustion made by the observer and the automated technique suggests that video tracking of rodents running on a treadmill can be used to determine both parameters in experimental studies. Video tracking technique allows for a more objective measure and would allow for an increased performance in experimentation. The Supplemental information to this manuscript contains an Excel file, which includes the code in Virtual Basic with freeware license, to process and visualize running data and automatically estimate the times to fatigue and exhaustion. Instructions for the software are also included.Item Burnout hurts doctors, and is bad for patients – so what’s to be done?(The Conversation US, Inc., 2015-04-03) Gunderman, Richard; Radiology and Imaging Sciences, School of MedicineItem Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment(Elsevier, 2018-06-15) Zaretsky, Dmitry V.; Kline, Hannah; Zaretskaia, Maria V.; Brown, Mary Beth; Durant, Pamela J.; Alves, Nathan J.; Rusyniak, Daniel E.; Emergency Medicine, School of MedicineStimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia.Item Molecular, metabolic, and functional CD4 T cell paralysis in the lymph node impedes tumor control(Elsevier, 2023) Guo, Mengdi; Abd-Rabbo, Diala; Bertol, Bruna C.; Carew, Madeleine; Lukhele, Sabelo; Snell, Laura M.; Xu, Wenxi; Boukhaled, Giselle M.; Elsaesser, Heidi; Halaby, Marie Jo; Hirano, Naoto; McGaha, Tracy L.; Brooks, David G.; Microbiology and Immunology, School of MedicineCD4 T cells are central effectors of anti-cancer immunity and immunotherapy, yet the regulation of CD4 tumor-specific T (TTS) cells is unclear. We demonstrate that CD4 TTS cells are quickly primed and begin to divide following tumor initiation. However, unlike CD8 TTS cells or exhaustion programming, CD4 TTS cell proliferation is rapidly frozen in place by a functional interplay of regulatory T cells and CTLA4. Together these mechanisms paralyze CD4 TTS cell differentiation, redirecting metabolic circuits, and reducing their accumulation in the tumor. The paralyzed state is actively maintained throughout cancer progression and CD4 TTS cells rapidly resume proliferation and functional differentiation when the suppressive constraints are alleviated. Overcoming their paralysis established long-term tumor control, demonstrating the importance of rapidly crippling CD4 TTS cells for tumor progression and their potential restoration as therapeutic targets.