- Browse by Subject
Browsing by Subject "Eutrophication"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Are the shoreline and eutrophication of desert lakes related to desert development?(Springer, 2021-01) Luo, Lihui; Zhao, Wenzhi; Wang, Lixin; Ogashawara, Igor; Yang, Qiyue; Zhou, Hai; Yang, Rong; Duan, Quntao; Zhou, Chenglin; Zhuang, Yanli; Earth Sciences, School of ScienceDesert lakes are unique ecosystems found in oases within desert landscapes. Despite the numerous studies on oases, there are no reports regarding the spatiotemporal distribution and causes of eutrophication in the desert lakes that are located at the edge of the Linze Oasis in northwestern China. In this study, the seasonal shoreline and eutrophication of a desert lake were monitored using an unmanned aerial vehicle (UAV) and water sampling during three crop growth stages. The spatial extents of the shoreline and algal blooms and the chromophoric dissolved organic matter (CDOM) absorption coefficient were derived through UAV images. The desert lake shoreline declined during the crop growing stage, which exhibited the largest water demand and began to expand after this stage. The estimated CDOM absorption coefficient measurements and classified algal bloom area showed seasonal variations that increased from spring to late summer and then decreased in autumn. The first two crop growth stages accounted for most of the water and fertilizer requirements of the entire growth period, which may have contributed to large amounts of groundwater consumption and pollution and resulted in peak eutrophication of the lake in the second growth stage. However, the CDOM absorption coefficient of the third stage was not well correlated with that of the first two stages, suggesting that the lake may be affected by the dual effects of groundwater and precipitation recharge in the third stage. These results indicate that the water quality of desert lakes may be affected by agricultural cultivation. The agricultural demands for water and fertilizer may change the spatiotemporal changes in water quality in the lake, especially in the middle and early stages of crop growth.Item "Clean Clothes vs. Clean Water": Consumer Activism, Gender, and the Fight to Clean Up the Great Lakes, 1965-1974(2018-08) Scherber, Annette Mary; Scarpino, Philip V.; Shrum, Rebecca K.; Robertson, Nancy MarieDuring the late 1960s and early 1970s, the polluted Great Lakes became a central focus of the North American environmental movement. A majority of this pollution stemmed from phosphate-based laundry detergent use, which had become the primary product households used to wash fabrics after World War II. The large volume of phosphorus in these detergents discharged into the lakes caused excess growths of algae to form in waterways, which turned green and smelly. As the algae died off, it reduced the oxygen in the water, making it less habitable for fish and other aquatic life, a process known as eutrophication. As primary consumers of laundry detergents during the time period, women, particularly white, middle-class housewives in the United States and Canada, became involved in state/provincial, national, and international discussions involving ecology, water pollution, and sewage treatment alongside scientists, politicians, and government officials. Their work as volunteers, activists, and lobbyists influencing the debate and ensuing policies on how best to abate this type of pollution, known as eutrophication, has often been ignored. This thesis recognizes the work women completed encouraging the enactment of key water quality regulations and popularizing the basic tenets of environmentally-conscious consumption practices during the environmental movement in the early 1970s.Item Internal Cycling in an Urban Drinking Water Reservoir(2007-10-12T18:43:19Z) Raftis, Robyn R.; Filippelli, Gabriel M.; Souch, Catherine; Tedesco, Lenore P.The focus of this study was to document phosphorus (P) and metal cycling in the Eagle Creek Reservoir (ECR), located in Indianapolis, central Indiana. Eagle Creek Reservoir serves the drinking water needs of over 80,000 residents. Within the last several years, algal blooms have created stress to the local treatment facility. The objective of this study was to examine how P cycling from oxygen deprived bottom sediments affects the algal bloom productivity. As such, cores were retrieved from different water depths (7 and 16 m) from portions of the reservoir where high surficial concentrations of organic matter and P were found to occur. The dried samples were analyzed for P, sulfur, iron, barium, cadmium, copper, lead, and zinc, using a strong acid digestion technique. The samples were also analyzed for iron-bound P (Fe-P), authigenic P (A-P), detrital P (D-P), organic P (O-P), reducible iron, and reducible manganese, using a sequential extraction technique. The results from the study showed moisture contents ranged from 16 to 76% and organic matter contents ranged from 2 to 12 wt%. The dry bulk densities were determined to be between 0.27 and 1.68 g cm3. The average percentages of P in ECS-1, as determined by the sequential extraction method, were as follows: Fe-P, 66.2%; A-P, 8.1%; D-P, 4.8%; and O-P, 20.9%. The average percentages of P in ECS-3, as determined by the sequential extraction method, were as follows: Fe-P, 77.0%; A-P, 6.5%; D-P, 2.8%; and O-P, 16.7%. To determine relationships between elements, correlations were calculated. When looking as the relationships between the P fractions and reducible Fe, differences were observed between the different water depths. There was less correlation between reducible Fe and Fe-P, and between O-P and Fe-P, in ECS-3, indicating that Fe-P is more efficiently dissolved and recycled in the deep portion of ECR. The study shows that the Fe-P flux, caused by the iron redox cycle, is persistent and will continue to influence algal bloom productivity in the deeper portions of ECR.Item Organic Phosphorus Dynamics and Contributions to Eutrophication in a Shallow, Freshwater Bay(2019-07) Kurek, Martin Roman; Druschel, Gregory K.; Filippelli, Gabriel; Gilhooly, William P., IIIPhosphorus (P) is essential for aquatic life; cycling between both inorganic and organic forms to maintain an ecological balance. Its addition into P-scarce freshwaters, either through terrestrial (external) or sedimentary (internal) loading, may disrupt this balance causing blooms of phytoplankton to flourish, often resulting in harmful environmental and anthropogenic consequences. Accordingly, reduction of external P loading has been commonly implemented with a recent focus on sediment-bound legacy P that is mobilized into the water column during dynamic redox conditions. Mobile P species have been identified as both inorganic and organic, with the former representing the most bioavailable fraction, and the latter serving as a source for labile P in freshwaters when in high demand, particularly during blooms. Missisquoi Bay in Lake Champlain, VT experiences harmful cyanobacterial blooms driven by internal P loading and has been the target of numerous geochemical and hydrological studies. This thesis describes a high-resolution investigation of both the organic P and organic matter compositions of the bay with respect to mobility, reactivity, and bioavailability using Fourier Transform-Ion Cyclotron Mass Spectrometry (FT-ICR MS). Sediment from Missisquoi Bay was extracted with a diverse set of reagents, resulting in fractionation of both organic matter and organic P, and illustrating the distribution of various labile and recalcitrant compounds. Many of these molecules are associated with porewater or easily extractable mineral surfaces providing a link to the benthic organic matter and phosphorus fractions available to microorganisms. Additionally, the organic chemistry of the bay was investigated seasonally from May 2017 to January 2018 revealing biological processing from the spring runoff season through the post-bloom summer season. The transition from late summer to under ice conditions in winter was less severe with a higher commonality between both organic matter and organic P compounds, suggesting reduced biological and abiotic degradation. Moreover, short-term anoxic incubations of sediment cores from each season revealed the presence of diverse organic signatures from sorption processes, and a significant contribution of benthic microbial activity to the benthic organic geochemistry.Item The mobility of phosphorus, iron, and manganese through the sediment–water continuum of a shallow eutrophic freshwater lake under stratified and mixed water-column conditions(Springer, 2016) Giles, Courtney D.; Isles, Peter D. F.; Manley, Tom; Xu, Yaoyang; Druschel, Gregory K.; Schroth, Andrew W.; Earth and Environmental Sciences, School of ScienceThe management of external nutrient inputs to eutrophic systems can be confounded due to a persistent pool of phosphorus (P) in lake sediments. The behaviors of P and trace metals depend largely on the reductive dissolution of amorphous iron (Fe) and manganese (Mn) (oxy)hydroxides in sediments; however, a holistic understanding of these dynamics in relation to the broader ecological and hydrodynamic conditions of the system remains elusive. We used a high-frequency monitoring approach to develop a comprehensive conceptual model of P, Mn, and Fe dynamics across the sediment water continuum of a shallow bay in Lake Champlain (Missisquoi Bay, USA). The greatest release of sediment P, Mn, and Fe occurred under stable hydrodynamic conditions, particularly during the onset of the cyanobacterial bloom and was associated with low available P and the accumulation of soluble Mn and Fe above the sediment–water interface (SWI). During the warmest part of the season, bloom severity and sediment P release was partially regulated by hydrodynamic drivers, which changed on hourly time scales to affect redox conditions at the SWI and bottom water concentrations of soluble P, Mn, and Fe. A geochemically distinct increase in soluble P and Fe concentrations, but not Mn, marked the influence of riverine inputs during a late season storm disturbance. Despite continued depletion of the reactive sediment P and metals pool into the bloom period, declining temperatures and a well-mixed water column resulted in bloom senescence and the return of P, Mn, and Fe to surface sediments. The closed cycling of P and metals in Missisquoi Bay poses a significant challenge for the long-term removal of P from this system. Multiple time-scale measures of physical and biogeochemical changes provide a basis for understanding P and trace metals behavior across sediments and the water column, which shape seasonally variable cyanobacterial blooms in shallow eutrophic systems.