- Browse by Subject
Browsing by Subject "Eukaryotic initiation factor-2"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A GCN2-Like Eukaryotic Initiation Factor 2 Kinase Increases the Viability of Extracellular Toxoplasma gondii Parasites(American Society for Microbiology, 2011) Konrad, Christian; Wek, Ronald C.; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineToxoplasmosis is a significant opportunistic infection caused by the protozoan parasite Toxoplasma gondii, an obligate intracellular pathogen that relies on host cell nutrients for parasite proliferation. Toxoplasma parasites divide until they rupture the host cell, at which point the extracellular parasites must survive until they find a new host cell. Recent studies have indicated that phosphorylation of Toxoplasma eukaryotic translation initiation factor 2-alpha (TgIF2α) plays a key role in promoting parasite viability during times of extracellular stress. Here we report the cloning and characterization of a TgIF2α kinase designated TgIF2K-D that is related to GCN2, a eukaryotic initiation factor 2α (eIF2α) kinase known to respond to nutrient starvation in other organisms. TgIF2K-D is present in the cytosol of both intra- and extracellular Toxoplasma parasites and facilitates translational control through TgIF2α phosphorylation in extracellular parasites. We generated a TgIF2K-D knockout parasite and demonstrated that loss of this eIF2α kinase leads to a significant fitness defect that stems from an inability of the parasite to adequately adapt to the environment outside host cells. This phenotype is consistent with that reported for our nonphosphorylatable TgIF2α mutant (S71A substitution), establishing that TgIF2K-D is the primary eIF2α kinase responsible for promoting extracellular viability of Toxoplasma. These studies suggest that eIF2α phosphorylation and translational control are an important mechanism by which vulnerable extracellular parasites protect themselves while searching for a new host cell. Additionally, TgIF2α is phosphorylated when intracellular parasites are deprived of nutrients, but this can occur independently of TgIF2K-D, indicating that this activity can be mediated by a different TgIF2K.Item Multiple mechanisms activate GCN2 eIF2 kinase in response to diverse stress conditions(Oxford University Press, 2024) Misra, Jagannath; Carlson, Kenneth R.; Spandau, Dan F.; Wek, Ronald C.; Biochemistry and Molecular Biology, School of MedicineDiverse environmental insults induce the integrated stress response (ISR), which features eIF2 phosphorylation and translational control that serves to restore protein homeostasis. The eIF2 kinase GCN2 is a first responder in the ISR that is activated by amino acid depletion and other stresses not directly related to nutrients. Two mechanisms are suggested to trigger an ordered process of GCN2 activation during stress: GCN2 monitoring stress via accumulating uncharged tRNAs or by stalled and colliding ribosomes. Our results suggest that while ribosomal collisions are indeed essential for GCN2 activation in response to translational elongation inhibitors, conditions that trigger deacylation of tRNAs activate GCN2 via its direct association with affected tRNAs. Both mechanisms require the GCN2 regulatory domain related to histidyl tRNA synthetases. GCN2 activation by UV irradiation features lowered amino acids and increased uncharged tRNAs and UV-induced ribosome collisions are suggested to be dispensable. We conclude that there are multiple mechanisms that activate GCN2 during diverse stresses.Item Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control(Portland Press, 2004) Sullivan, William J., Jr.; Narasimhan, Jana; Bhatti, Micah M.; Wek, Ronald C.; Pharmacology and Toxicology, School of MedicineThe ubiquitous intracellular parasite Toxoplasma gondii (phylum Apicomplexa) differentiates into an encysted form (bradyzoite) that can repeatedly re-emerge as a life-threatening acute infection (tachyzoite) upon impairment of immunity. Since the switch from tachyzoite to bradyzoite is a stress-induced response, we sought to identify components related to the phosphorylation of the alpha subunit of eIF2 (eukaryotic initiation factor-2), a well-characterized event associated with stress remediation in other eukaryotic systems. In addition to characterizing Toxoplasma eIF2alpha (TgIF2alpha), we have discovered a novel eIF2 protein kinase, designated TgIF2K-A (Toxoplasma gondii initiation factor-2kinase). Although the catalytic domain of TgIF2K-A contains sequence and structural features that are conserved among members of the eIF2 kinase family, TgIF2K-A has an extended N-terminal region that is highly divergent from other eIF2 kinases. TgIF2K-A specifically phosphorylates the regulatory serine residue of yeast eIF2alpha in vitro and in vivo, and can modulate translation when expressed in the yeast model system. We also demonstrate that TgIF2K-A phosphorylates the analogous regulatory serine residue of recombinant TgIF2alpha in vitro. Finally, we demonstrate that TgIF2alpha phosphorylation in tachyzoites is enhanced in response to heat shock or alkaline stress, conditions known to induce parasite differentiation in vitro. Collectively, this study suggests that eIF2 kinase-mediated stress responses are conserved in Apicomplexa, and a novel family member exists that may control parasite-specific events, including the clinically relevant conversion into bradyzoite cysts.Item Phosphorylation of Eukaryotic Initiation Factor-2α during Stress and Encystation in Entamoeba Species(Public Library of Science, 2016-12-08) Hendrick, Holland M.; Welter, Brenda H.; Hapstack, Matthew A.; Sykes, Steven E.; Sullivan, William J., Jr.; Temesvari, Lesly A.; Pharmacology and Toxicology, School of MedicineEntamoeba histolytica is an enteric pathogen responsible for amoebic dysentery and liver abscess. It alternates between the host-restricted trophozoite form and the infective environmentally-stable cyst stage. Throughout its lifecycle E. histolytica experiences stress, in part, from host immune pressure. Conversion to cysts is presumed to be a stress-response. In other systems, stress induces phosphorylation of a serine residue on eukaryotic translation initiation factor-2α (eIF2α). This inhibits eIF2α activity resulting in a general decline in protein synthesis. Genomic data reveal that E. histolytica possesses eIF2α (EheIF2α) with a conserved phosphorylatable serine at position 59 (Ser59). Thus, this pathogen may have the machinery for stress-induced translational control. To test this, we exposed cells to different stress conditions and measured the level of total and phospho-EheIF2α. Long-term serum starvation, long-term heat shock, and oxidative stress induced an increase in the level of phospho-EheIF2α, while short-term serum starvation, short-term heat shock, or glucose deprivation did not. Long-term serum starvation also caused a decrease in polyribosome abundance, which is in accordance with the observation that this condition induces phosphorylation of EheIF2α. We generated transgenic cells that overexpress wildtype EheIF2α, a non-phosphorylatable variant of eIF2α in which Ser59 was mutated to alanine (EheIF2α-S59A), or a phosphomimetic variant of eIF2α in which Ser59 was mutated to aspartic acid (EheIF2α-S59D). Consistent with the known functions of eIF2α, cells expressing wildtype or EheIF2α-S59D exhibited increased or decreased translation, respectively. Surprisingly, cells expressing EheIF2α-S59A also exhibited reduced translation. Cells expressing EheIF2α-S59D were more resistant to long-term serum starvation underscoring the significance of EheIF2α phosphorylation in managing stress. Finally, phospho-eIF2α accumulated during encystation in E. invadens, a model encystation system. Together, these data demonstrate that the eIF2α-dependent stress response system is operational in Entamoeba species.