ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "EtOH"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Circuit-level Mechanisms of EtOH-dependent dopamine release.
    (2017-06-30) DiVolo, Matteo; Morozova, Ekaterina; Lapish, Christopher; Kuznetsov, Alexey; Gutkin, Boris; Mathematical Sciences, School of Science
    Alcoholism is the third leading cause of preventable mortality in the world. In the last decades a large body of experimental data has paved the way to a clearer knowledge of the specific molecular targets through which ethanol (EtOH) acts on brain circuits. Yet how these multiple mechanisms play together to result in a dysregulated dopamine (DA) release under alcohol influence remains unclear. In this manuscript, we delineate potential circuit-level mechanisms responsible for EtOH-dependent increase and dysregulation of DA release from the ventral tegmental area (VTA) into nucleus accumbens (Nac). For this purpose, we build a circuit model of the VTA composed of DA and GABAergic neurons, that integrate external Glutamatergic (Glu) inputs to result in DA release. In particular, we reproduced a non-monotonic dose dependence of DA neurons firing activity on EtOH: an increase in firing at small to intermediate doses and a drop below baseline (alcohol-free) levels at high EtOH concentrations. Our simulations predict that a certain level of synchrony is necessary for the firing rate increase produced by EtOH. Moreover, EtOH effect on the DA neuron firing rate and, consequently, DA release can reverse depending on the average activity level of the Glu afferents to VTA. Further, we propose a mechanism for emergence of transient (phasic) DA peaks and the increase in their frequency in EtOH. Phasic DA transients result from DA neuron population bursts, and these bursts are enhanced in EtOH. These results suggest the role of synchrony and average activity level of Glu afferents to VTA in shaping the phasic and tonic DA release under the acute influence of EtOH and in normal conditions.
  • Loading...
    Thumbnail Image
    Item
    Dynamic Alterations to Hepatic MicroRNA-29a in Response to Long-Term High-Fat Diet and EtOH Feeding
    (MDPI, 2023-09-26) Liang, Tiebing; Kota, Janaiah; Williams, Kent E.; Saxena, Romil; Gawrieh, Samer; Zhong, Xiaoling; Zimmers, Teresa A.; Chalasani, Naga; Surgery, School of Medicine
    MicroRNA-29a (miR-29a) is a well characterized fibro-inflammatory molecule and its aberrant expression is linked to a variety of pathological liver conditions. The long-term effects of a high-fat diet (HFD) in combination with different levels of EtOH consumption on miR-29a expression and liver pathobiology are unknown. Mice at 8 weeks of age were divided into five groups (calorie-matched diet plus water (CMD) as a control group, HFD plus water (HFD) as a liver disease group, HFD plus 2% EtOH (HFD + 2% E), HFD + 10% E, and HFD + 20% E as intervention groups) and fed for 4, 13, 26, or 39 weeks. At each time point, analyses were performed for liver weight/body weight (BW) ratio, AST/ALT ratio, as well as liver histology assessments, which included inflammation, estimated fat deposition, lipid area, and fibrosis. Hepatic miR-29a was measured and correlations with phenotypic traits were determined. Four-week feeding produced no differences between the groups on all collected phenotypic traits or miR-29a expression, while significant effects were observed after 13 weeks, with EtOH concentration-specific induction of miR-29a. A turning point for most of the collected traits was apparent at 26 weeks, and miR-29a was significantly down-regulated with increasing liver injury. Overall, miR-29a up-regulation was associated with a lower liver/BW ratio, fat deposition, inflammation, and fibrosis, suggesting a protective role of miR-29a against liver disease progression. A HFD plus increasing concentrations of EtOH produces progressive adverse effects on the liver, with no evidence of beneficial effects of low-dose EtOH consumption. Moreover, miR-29a up-regulation is associated with less severe liver injury.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University