ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Estradiol"

Now showing 1 - 10 of 17
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    17-Beta estradiol-induced modulation of the immune system
    (1984) Myers, Michael Joseph
  • Loading...
    Thumbnail Image
    Item
    A dynamic time order network for time-series gene expression data analysis
    (Springer Nature, 2012) Zhang, Pengyue; Mourad, Raphaël; Xiang, Yang; Huang, Kun; Huang, Tim; Nephew, Kenneth; Liu, Yunlong; Li, Lang; Center for Computational Biology and Bioinformatics, School of Medicine
    Background: Typical analysis of time-series gene expression data such as clustering or graphical models cannot distinguish between early and later drug responsive gene targets in cancer cells. However, these genes would represent good candidate biomarkers. Results: We propose a new model - the dynamic time order network - to distinguish and connect early and later drug responsive gene targets. This network is constructed based on an integrated differential equation. Spline regression is applied for an accurate modeling of the time variation of gene expressions. Then a likelihood ratio test is implemented to infer the time order of any gene expression pair. One application of the model is the discovery of estrogen response biomarkers. For this purpose, we focused on genes whose responses are late when the breast cancer cells are treated with estradiol (E2). Conclusions: Our approach has been validated by successfully finding time order relations between genes of the cell cycle system. More notably, we found late response genes potentially interesting as biomarkers of E2 treatment.
  • Loading...
    Thumbnail Image
    Item
    Acute Exposure to Ozone Affects Circulating Estradiol Levels and Gonadotropin Gene Expression in Female Mice
    (MDPI, 2025-02-05) Rousselle, Dustin; Silveyra, Patricia; Medicine, School of Medicine
    Ozone, a critical air pollutant, has been shown to lead to systemic inflammation that can alter bodily functions, including hormone secretion, fertility, and the hypothalamic-pituitary-gonadal (HPG) axis. This study aimed to quantify changes in hormone production and follicle development after acute exposure to ozone using an animal model to identify the potential mechanisms underlying the observed effects of air pollution exposures on fertility and hormone secretion. To accomplish this, regularly cycling 8-week-old female C57BL/6J mice were exposed to 2 ppm of ozone or filtered air (control) for 3 h on the day of proestrus. Blood, ovaries, brain tissues, and pituitary glands were collected at 4 h after exposure to evaluate hormone levels, ovarian follicle distribution, and gene expression. Ovaries were also harvested at 24 h post-exposure. We found that at 4 h after ozone exposure, mice had significantly higher (30%) circulating estradiol levels than mice exposed to filtered air. This effect was accompanied by a decrease in mRNA expression of gonadotropin genes (LH, FSH) and gonadotropin-releasing hormone in the pituitary gland. Analysis of ovarian tissue at 4 h and 24 h after exposure showed no significant changes in follicle composition or the expression of steroidogenesis genes. We conclude that acute ozone exposure affects sex hormone levels and disrupts the HPG axis. Future studies addressing chronic or long-term effects of air pollution exposure are needed to elucidate the mechanisms by which ambient ozone affects endocrine function.
  • Loading...
    Thumbnail Image
    Item
    Differential effects of exercise and hormone treatment on spinal cord injury-induced changes in micturition and morphology of external urethral sphincter motoneurons
    (Sage, 2024) Hibbard, Emily A.; Du, Xiaolong; Zhang, Yihong; Xu, Xiao-Ming; Deng, Lingxiao; Sengelaub, Dale R.; Neurological Surgery, School of Medicine
    Background: Spinal cord injury (SCI) results in lesions that destroy tissue and spinal tracts, leading to deficits in locomotor and autonomic function. We have previously shown that after SCI, surviving motoneurons innervating hindlimb muscles exhibit extensive dendritic atrophy, which can be attenuated by treadmill training or treatment with gonadal hormones post-injury. We have also shown that following SCI, both exercise and treatment with gonadal hormones improve urinary function. Animals exercised with forced running wheel training show improved urinary function as measured by bladder cystometry and sphincter electromyography, and treatment with gonadal hormones improves voiding patterns as measured by metabolic cage testing. Objective: The objective of the current study was to examine the potential protective effects of exercise or hormone treatment on the structure and function of motoneurons innervating the external urethral sphincter (EUS) after contusive SCI. Methods: Gonadally intact young adult male rats received either a sham or a thoracic contusion injury. Immediately after injury, one cohort of animals was implanted with subcutaneous Silastic capsules filled with estradiol (E) and dihydrotestosterone (D) or left blank; continuous hormone treatment occurred for 4 weeks post-injury. A separate cohort of SCI-animals received either 12 weeks of forced wheel running exercise or no exercise treatment starting two weeks after injury. At the end of treatment, urinary void volume was measured using metabolic cages and EUS motoneurons were labeled with cholera toxin-conjugated horseradish peroxidase, allowing for assessment of dendritic morphology in three dimensions. Results: Locomotor performance was improved in exercised animals after SCI. Void volumes increased after SCI in all animals; void volume was unaffected by treatment with exercise, but was dramatically improved by treatment with E + D. Similar to what we have previously reported for hindlimb motoneurons after SCI, dendritic length of EUS motoneurons was significantly decreased after SCI compared to sham animals. Exercise did not reverse injury-induced atrophy, however E + D treatment significantly protected dendritic length. Conclusions: These results suggest that some aspects of urinary dysfunction after SCI can be improved through treatment with gonadal hormones, potentially through their effects on EUS motoneurons. Moreover, a more comprehensive treatment regime that addresses multiple SCI-induced sequelae, i.e., locomotor and voiding deficits, would include both hormones and exercise.
  • Loading...
    Thumbnail Image
    Item
    Effects of exemestane and letrozole therapy on plasma concentrations of estrogens in a randomized trial of postmenopausal women with breast cancer
    (Springer, 2017-02) Robarge, Jason D.; Desta, Zereunesay; Nguyen, Anne T.; Li, Lang; Hertz, Daniel; Rae, James M.; Hayes, Daniel F.; Storniolo, Anna M.; Stearns, Vered; Flockhart, David A.; Skaar, Todd C.; Henry, N. Lynn; Medicine, School of Medicine
    PURPOSE: Inter-individual differences in estrogen concentrations during treatment with aromatase inhibitors (AIs) may contribute to therapeutic response and toxicity. The aim of this study was to determine plasma concentrations of estradiol (E2), estrone (E1), and estrone sulfate (E1S) in a large cohort of AI-treated breast cancer patients. METHODS: In a randomized, multicenter trial of postmenopausal women with early-stage breast cancer starting treatment with letrozole (n = 241) or exemestane (n = 228), plasma estrogen concentrations at baseline and after 3 months were quantitated using a sensitive mass spectrometry-based assay. Concentrations and suppression below the lower limit of quantification (LLOQ) were compared between estrogens and between drugs. RESULTS: The ranges of baseline estrogen concentrations were
  • Loading...
    Thumbnail Image
    Item
    Estrogen induces global reorganization of chromatin structure in human breast cancer cells
    (PLoS, 2014-12-03) Mourad, Raphael; Hsu, Pei-Yin; Juran, Liran; Shen, Changyu; Koneru, Prasad; Lin, Hai; Liu, Yunlong; Nephew, Kenneth; Huang, Tim H.; Li, Lang; Department of Medical and Molecular Genetics, IU School of Medicine
    In the cell nucleus, each chromosome is confined to a chromosome territory. This spatial organization of chromosomes plays a crucial role in gene regulation and genome stability. An additional level of organization has been discovered at the chromosome scale: the spatial segregation into open and closed chromatins to form two genome-wide compartments. Although considerable progress has been made in our knowledge of chromatin organization, a fundamental issue remains the understanding of its dynamics, especially in cancer. To address this issue, we performed genome-wide mapping of chromatin interactions (Hi-C) over the time after estrogen stimulation of breast cancer cells. To biologically interpret these interactions, we integrated with estrogen receptor α (ERα) binding events, gene expression and epigenetic marks. We show that gene-rich chromosomes as well as areas of open and highly transcribed chromatins are rearranged to greater spatial proximity, thus enabling genes to share transcriptional machinery and regulatory elements. At a smaller scale, differentially interacting loci are enriched for cancer proliferation and estrogen-related genes. Moreover, these loci are correlated with higher ERα binding events and gene expression. Taken together these results reveal the role of a hormone--estrogen--on genome organization, and its effect on gene regulation in cancer.
  • Loading...
    Thumbnail Image
    Item
    Hormonally Regulated Myogenic miR-486 Influences Sex-specific Differences in Cancer-induced Skeletal Muscle Defects
    (Endocrine Society, 2022-09-01) Wang, Ruizhong; Bhat-Nakshatri, Poornima; Zhong, Xiaoling; Zimmers, Teresa; Nakshatri, Harikrishna; Surgery, School of Medicine
    Cancer-induced skeletal muscle defects show sex-specific differences in severity with men performing poorly compared to women. Hormones and sex chromosomal differences are suggested to mediate these differences, but the functional skeletal muscle markers to document these differences are unknown. We show that the myogenic microRNA miR-486 is a marker of sex-specific differences in cancer-induced skeletal muscle defects. Cancer-induced loss of circulating miR-486 was more severe in men with bladder, lung, and pancreatic cancers compared to women with the same cancer types. In a syngeneic model of pancreatic cancer, circulating and skeletal muscle loss of miR-486 was more severe in male mice compared to female mice. Estradiol (E2) and the clinically used selective estrogen receptor modulator toremifene increased miR-486 in undifferentiated and differentiated myoblast cell line C2C12 and E2-inducible expression correlated with direct binding of estrogen receptor alpha (ERα) to the regulatory region of the miR-486 gene. E2 and toremifene reduced the actions of cytokines such as myostatin, transforming growth factor β, and tumor necrosis factor α, which mediate cancer-induced skeletal muscle wasting. E2- and toremifene-treated C2C12 myoblast/myotube cells contained elevated levels of active protein kinase B (AKT) with a corresponding decrease in the levels of its negative regulator PTEN, which is a target of miR-486. We propose an ERα:E2-miR-486-AKT signaling axis, which reduces the deleterious effects of cancer-induced cytokines/chemokines on skeletal muscle mass and/or function.
  • Loading...
    Thumbnail Image
    Item
    Interrelationship Between Alcohol Intake and Endogenous Sex-Steroid Hormones on Diabetes Risk in Postmenopausal Women
    (Informa UK (Taylor & Francis), 2015) Rohwer, Rachelle D.; Liu, Simin; You, Nai-Chieh; Buring, Julie E.; Manson, JoAnn E.; Song, Yiqing; Department of Epidemiology, Richard M. Fairbanks School of Public Health
    OBJECTIVE: We examined whether circulating concentrations of sex hormones, including estradiol, testosterone, sex hormone-binding globulin (SHBG), and dehydroepiandrosterone sulfate (DHEAS), were associated with alcohol intake or mediated the alcohol-type 2 diabetes (T2D) association. METHODS: Among women not using hormone replacement therapy and free of baseline cardiovascular disease, cancer, and diabetes in the Women's Health Study, 359 incident cases of T2D and 359 matched controls were chosen during 10 years of follow-up. RESULTS: Frequent alcohol intake (≥1 drink/day) was positively and significantly associated with higher plasma estradiol concentrations in an age-adjusted model (β = 0.14, 95% confidence interval [CI], 0.03, 0.26), compared to rarely/never alcohol intake. After adjusting for additional known covariates, this alcohol-estradiol association remained significant (β = 0.19, 95% CI, 0.07, 0.30). Testosterone (β = 0.13, 95% CI, -0.05, 0.31), SHBG (β = 0.07, 95% CI, -0.07, 0.20), and DHEAS (β = 0.14, 95% CI, -0.04, 0.31) showed positive associations without statistical significance. Estradiol alone or in combination with SHBG appeared to influence the observed protective association between frequent alcohol consumption and T2D risk, with a 12%-21% reduction in odds ratio in the multivariate-adjusted models. CONCLUSIONS: Our cross-sectional analysis showed positive associations between alcohol intake and endogenous estradiol concentrations. Our prospective data suggested that baseline concentrations of estradiol, with or without SHBG, might influence the alcohol-T2D association in postmenopausal women.
  • Loading...
    Thumbnail Image
    Item
    Long-term cognitive effects of menopausal hormone therapy: Findings from the KEEPS Continuation Study
    (Public Library of Science, 2024-11-21) Gleason, Carey E.; Dowling, N. Maritza; Kara, Firat; James, Taryn T.; Salazar, Hector; Ferrer Simo, Carola A.; Harman, Sherman M.; Manson, JoAnn E.; Hammers, Dustin B.; Naftolin, Frederick N.; Pal, Lubna; Miller, Virginia M.; Cedars, Marcelle I.; Lobo, Rogerio A.; Malek-Ahmadi, Michael; Kantarci, Kejal; Neurology, School of Medicine
    Background: Findings from Kronos Early Estrogen Prevention Study (KEEPS)-Cog trial suggested no cognitive benefit or harm after 48 months of menopausal hormone therapy (mHT) initiated within 3 years of final menstrual period. To clarify the long-term effects of mHT initiated in early postmenopause, the observational KEEPS Continuation Study reevaluated cognition, mood, and neuroimaging effects in participants enrolled in the KEEPS-Cog and its parent study the KEEPS approximately 10 years after trial completion. We hypothesized that women randomized to transdermal estradiol (tE2) during early postmenopause would show cognitive benefits, while oral conjugated equine estrogens (oCEE) would show no effect, compared to placebo over the 10 years following randomization in the KEEPS trial. Methods and findings: The KEEPS-Cog (2005-2008) was an ancillary study to the KEEPS (NCT00154180), in which participants were randomized into 3 groups: oCEE (Premarin, 0.45 mg/d), tE2 (Climara, 50 μg/d) both with micronized progesterone (Prometrium, 200 mg/d for 12 d/mo) or placebo pills and patch for 48 months. KEEPS Continuation (2017-2022), an observational, longitudinal cohort study of KEEPS clinical trial, involved recontacting KEEPS participants approximately 10 years after the completion of the 4-year clinical trial to attend in-person research visits. Seven of the original 9 sites participated in the KEEPS Continuation, resulting in 622 women of original 727 being invited to return for a visit, with 299 enrolling across the 7 sites. KEEPS Continuation participants repeated the original KEEPS-Cog test battery which was analyzed using 4 cognitive factor scores and a global cognitive score. Cognitive data from both KEEPS and KEEPS Continuation were available for 275 participants. Latent growth models (LGMs) assessed whether baseline cognition and cognitive changes during KEEPS predicted cognitive performance at follow-up, and whether mHT randomization modified these relationships, adjusting for covariates. Similar health characteristics were observed at KEEPS randomization for KEEPS Continuation participants and nonparticipants (i.e., women not returning for the KEEPS Continuation). The LGM revealed significant associations between intercepts and slopes for cognitive performance across almost all domains, indicating that cognitive factor scores changed over time. Tests assessing the effects of mHT allocation on cognitive slopes during the KEEPS and across all years of follow-up including the KEEPS Continuation visit were all statistically nonsignificant. The KEEPS Continuation study found no long-term cognitive effects of mHT, with baseline cognition and changes during KEEPS being the strongest predictors of later performance. Cross-sectional comparisons confirmed that participants assigned to mHT in KEEPS (oCEE and tE2 groups) performed similarly on cognitive measures to those randomized to placebo, approximately 10 years after completion of the randomized treatments. These findings suggest that mHT poses no long-term cognitive harm; conversely, it provides no cognitive benefit or protective effects against cognitive decline. Conclusions: In these KEEPS Continuation analyses, there were no long-term cognitive effects of short-term exposure to mHT started in early menopause versus placebo. These data provide reassurance about the long-term neurocognitive safety of mHT for symptom management in healthy, recently postmenopausal women, while also suggesting that mHT does not improve or preserve cognitive function in this population.
  • Loading...
    Thumbnail Image
    Item
    MEK5/ERK5 Signaling Suppresses Estrogen Receptor Expression and Promotes Hormone-Independent Tumorigenesis
    (Public Library of Science, 2013-08-09) Antoon, James W.; Martin, Elizabeth C.; Lai, Rongye; Salvo, Virgilo A.; Tang, Yan; Nitzchke, Ashley M.; Elliott, Steven; Nam, Seung Yoon; Xiong, Wei; Rhodes, Lyndsay V.; Collins-Burow, Bridgette; David, Odile; Wang, Guandi; Shan, Bin; Beckman, Barbara S.; Nephew, Kenneth P.; Burow, Matthew E.; Cellular and Integrative Physiology, School of Medicine
    Endocrine resistance and metastatic progression are primary causes of treatment failure in breast cancer. While mitogen activated protein kinases (MAPKs) are known to promote ligand-independent cell growth, the role of the MEK5-ERK5 pathway in the progression of clinical breast carcinoma remains poorly understood. Here, we demonstrated increased ERK5 activation in 30 of 39 (76.9%) clinical tumor samples, as well as across breast cancer cell systems. Overexpression of MEK5 in MCF-7 cells promoted both hormone-dependent and hormone-independent tumorigenesis in vitro and in vivo and conferred endocrine therapy resistance to previously sensitive breast cancer cells. Expression of MEK5 suppressed estrogen receptor (ER)α, but not ER-β protein levels, and abrogated downstream estrogen response element (ERE) transcriptional activity and ER-mediated gene transcription. Global gene expression changes associated with upregulation of MEK5 included increased activation of ER-α independent growth signaling pathways and promotion of epithelial-to-mesenchymal transition (EMT) markers. Taken together, our findings show that the MEK5-ERK5 pathway mediates progression to an ER(-), mesenchymal and endocrine therapy resistant phenotype. Given the need for new clinical therapeutic targets, our results demonstrate the therapeutic potential of targeting the MEK5-ERK5 pathway in breast cancer.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University