- Browse by Subject
Browsing by Subject "Epithelial cells"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item Differential profiles of soluble and cellular toll like receptor (TLR)-2 and 4 in chronic periodontitis(PLOS, 2018-12-20) AlQallaf, Hawra; Hamada, Yusuke; Blanchard, Steven; Shin, Daniel; Gregory, Richard; Srinivasan, Mythily; Periodontology, School of DentistryChronic periodontitis is a common inflammatory disease initiated by a complex microbial biofilm and mediated by the host response causing destruction of the supporting tissues of the teeth. Host recognition of pathogens is mediated by toll-like receptors (TLRs) that bind conserved molecular patterns shared by large groups of microorganisms. The oral epithelial cells respond to most periodontopathic bacteria via TLR-2 and TLR-4. In addition to the membrane-associated receptors, soluble forms of TLR-2 (sTLR-2) and TLR-4 (sTLR-4) have been identified and are thought to play a regulatory role by binding microbial ligands. sTLR-2 has been shown to arise from ectodomain shedding of the extracellular domain of the membrane receptor and sTLR-4 is thought to be an alternate spliced form. Many studies have previously reported the presence of elevated numbers of viable exfoliated epithelial cells in the saliva of patients with chronic periodontitis. The objective of this study was to investigate the potential value of salivary sTLR-2 and sTLR-4 together with the paired epithelial cell-associated TLR-2/4 mRNA as diagnostic markers for chronic periodontitis. Unstimulated whole saliva was collected after obtaining informed consent from 40 individuals with either periodontitis or gingivitis. The sTLR-2 and sTLR4 in saliva was measured by enzyme-linked immunosorbent assay. The TLR-2 and TLR-4 transcript in the epithelial cells in saliva was measured by real time polymerase chain reaction. While levels of sTLR-2 exhibited an inverse correlation, sTLR-4 positively correlated with clinical parameters in the gingivitis cohort. Interestingly, both correlations were lost in the periodontitis cohort indicating a dysregulated host response. On the other hand, while the sTLR-2 and the paired epithelial cell associated TLR-2 mRNA exhibited a direct correlation (r2 = 0.62), that of sTLR4 and TLR-4 mRNA exhibited an inverse correlation (r2 = 0.53) in the periodontitis cohort. Collectively, assessments of salivary sTLR2 and sTLR4 together with the respective transcripts in the epithelial cells could provide clinically relevant markers of disease progression from gingivitis to periodontitis.Item Differential profiles of soluble and cellular toll like receptor (TLR)-2 and 4 in chronic periodontitis(PLOS, 2018-12-20) AlQallaf, Hawra; Hamada, Yusuke; Blanchard, Steven; Shin, Daniel; Gregory, Richard; Srinivasan, Mythily; Periodontology, School of DentistryChronic periodontitis is a common inflammatory disease initiated by a complex microbial biofilm and mediated by the host response causing destruction of the supporting tissues of the teeth. Host recognition of pathogens is mediated by toll-like receptors (TLRs) that bind conserved molecular patterns shared by large groups of microorganisms. The oral epithelial cells respond to most periodontopathic bacteria via TLR-2 and TLR-4. In addition to the membrane-associated receptors, soluble forms of TLR-2 (sTLR-2) and TLR-4 (sTLR-4) have been identified and are thought to play a regulatory role by binding microbial ligands. sTLR-2 has been shown to arise from ectodomain shedding of the extracellular domain of the membrane receptor and sTLR-4 is thought to be an alternate spliced form. Many studies have previously reported the presence of elevated numbers of viable exfoliated epithelial cells in the saliva of patients with chronic periodontitis. The objective of this study was to investigate the potential value of salivary sTLR-2 and sTLR-4 together with the paired epithelial cell-associated TLR-2/4 mRNA as diagnostic markers for chronic periodontitis. Unstimulated whole saliva was collected after obtaining informed consent from 40 individuals with either periodontitis or gingivitis. The sTLR-2 and sTLR4 in saliva was measured by enzyme-linked immunosorbent assay. The TLR-2 and TLR-4 transcript in the epithelial cells in saliva was measured by real time polymerase chain reaction. While levels of sTLR-2 exhibited an inverse correlation, sTLR-4 positively correlated with clinical parameters in the gingivitis cohort. Interestingly, both correlations were lost in the periodontitis cohort indicating a dysregulated host response. On the other hand, while the sTLR-2 and the paired epithelial cell associated TLR-2 mRNA exhibited a direct correlation (r2 = 0.62), that of sTLR4 and TLR-4 mRNA exhibited an inverse correlation (r2 = 0.53) in the periodontitis cohort. Collectively, assessments of salivary sTLR2 and sTLR4 together with the respective transcripts in the epithelial cells could provide clinically relevant markers of disease progression from gingivitis to periodontitis.Item Dihydrotestosterone suppression of proinflammatory gene expression in human meibomian gland epithelial cells(Elsevier, 2020-04) Sahin, Afsun; Liu, Yang; Kam, Wendy R.; Darabad, Raheleh Rahimi; Sullivan, David A.; Medicine, School of MedicinePurpose: We discovered that dihydrotestosterone (DHT) decreases the ability of lipopolysaccharide, a bacterial toxin, to stimulate the secretion of leukotriene B4, a potent proinflammatory mediator, by immortalized human meibomian gland epithelial cells (IHMGECs). We hypothesize that this hormone action reflects an androgen suppression of proinflammatory gene activity in these cells. Our goal was to test this hypothesis. For comparison, we also examined whether DHT treatment elicits the same effect in immortalized human corneal (IHC) and conjunctival (IHConj) ECs. Methods: Differentiated cells were cultured in media containing vehicle or 10 nM DHT. Cells (n = 3 wells/treatment group) were then processed for RNA isolation and the analysis of gene expression by using Illumina BeadChips, background subtraction, cubic spline normalization and Geospiza software. Results: Our results demonstrate that DHT significantly suppressed the expression of numerous immune-related genes in HMGECs, such as those associated with antigen processing and presentation, innate and adaptive immune responses, chemotaxis, and cytokine production. DHT also enhanced the expression of genes for defensin β1, IL-1 receptor antagonist, and the anti-inflammatory serine peptidase inhibitor, Kazal type 5. In contrast, DHT had no effect on proinflammatory gene expression in HCECs, and significantly increased 33 gene ontologies linked to the immune system in HConjECs. Conclusions: Our findings support our hypothesis that androgens suppress proinflammatory gene expression in IHMGECs. This hormone effect may contribute to the typical absence of inflammation within the human meibomian gland.Item Epithelial Expressed B7-H4 Drives Differential Immunotherapy Response in Murine and Human Breast Cancer(American Association for Cancer Research, 2024) Wescott, Elizabeth C.; Sun, Xiaopeng; Gonzalez-Ericsson, Paula; Hanna, Ann; Taylor, Brandie C.; Sanchez, Violeta; Bronzini, Juliana; Opalenik, Susan R.; Sanders, Melinda E.; Wulfkuhle, Julia; Gallagher, Rosa I.; Gomez, Henry; Isaacs, Claudine; Bharti, Vijaya; Wilson, John T.; Ballinger, Tarah J.; Santa-Maria, Cesar A.; Shah, Payal D.; Dees, Elizabeth C.; Lehmann, Brian D.; Abramson, Vandana G.; Hirst, Gillian L.; Brown Swigart, Lamorna; van ˈt Veer, Laura J.; Esserman, Laura J.; Petricoin, Emanuel F.; Pietenpol, Jennifer A.; Balko, Justin M.; Medicine, School of MedicineCombinations of immune checkpoint inhibitors (ICI, including anti-PD-1/PD-L1) and chemotherapy have been FDA approved for metastatic and early-stage triple-negative breast cancer (TNBC), but most patients do not benefit. B7-H4 is a B7 family ligand with proposed immunosuppressive functions being explored as a cancer immunotherapy target and may be associated with anti-PD-L1 resistance. However, little is known about its regulation and effect on immune cell function in breast cancers. We assessed murine and human breast cancer cells to identify regulation mechanisms of B7-H4 in vitro. We used an immunocompetent anti-PD-L1-sensitive orthotopic mammary cancer model and induced ectopic expression of B7-H4. We assessed therapy response and transcriptional changes at baseline and under treatment with anti-PD-L1. We observed B7-H4 was highly associated with epithelial cell status and transcription factors and found to be regulated by PI3K activity. EMT6 tumors with cell-surface B7-H4 expression were more resistant to immunotherapy. In addition, tumor-infiltrating immune cells had reduced immune activation signaling based on transcriptomic analysis. Paradoxically, in human breast cancer, B7-H4 expression was associated with survival benefit for patients with metastatic TNBC treated with carboplatin plus anti-PD-L1 and was associated with no change in response or survival for patients with early breast cancer receiving chemotherapy plus anti-PD-1. While B7-H4 induces tumor resistance to anti-PD-L1 in murine models, there are alternative mechanisms of signaling and function in human cancers. In addition, the strong correlation of B7-H4 to epithelial cell markers suggests a potential regulatory mechanism of B7-H4 independent of PD-L1. Significance: This translational study confirms the association of B7-H4 expression with a cold immune microenvironment in breast cancer and offers preclinical studies demonstrating a potential role for B7-H4 in suppressing response to checkpoint therapy. However, analysis of two clinical trials with checkpoint inhibitors in the early and metastatic settings argue against B7-H4 as being a mechanism of clinical resistance to checkpoints, with clear implications for its candidacy as a therapeutic target.Item Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Steatohepatitis Is Associated with Increased Intestinal Inflammation(Elsevier, 2021) Matthews, Destiny R.; Li, Honggui; Zhou, Jing; Li, Qingsheng; Glaser, Shannon; Francis, Heather; Alpini, Gianfranco; Wu, Chaodong; Medicine, School of MedicineInflammation drives the pathogenesis of nonalcoholic steatohepatitis (NASH). The current study examined changes in intestinal inflammation during NASH. In male C57BL/6J mice, feeding a methionine- and choline-deficient diet (MCD) resulted in severe hepatic steatosis and inflammation relative to feeding a chow diet (CD). MCD-fed mice exhibited characteristics of mucosal and submucosal inflammatory responses compared with CD-fed mice. Moreover, intestinal phosphorylation states of c-Jun N-terminal protein kinase p46 and mRNA levels of IL-1B, IL-6, tumor necrosis factor alpha, and monocyte chemoattractant protein-1 were significantly higher and intestinal mRNA levels of IL-4 and IL-13 were significantly lower in MCD-fed mice compared with those in CD mice. Surprisingly, upon treatment with MCD-mimicking media, the proinflammatory responses in cultured intestinal epithelial CMT-93 cells did not differ significantly from those in CMT-93 cells treated with control media. In contrast, in RAW264.7 macrophages, MCD-mimicking media significantly increased the phosphorylation states of c-Jun N-terminal protein kinase p46 and mitogen-activated protein kinases p38 and mRNA levels of IL-1B, IL-6, IL-10, and tumor necrosis factor alpha under either basal or lipopolysaccharide-stimulated conditions. Collectively, these results suggest that increased intestinal inflammation is associated with NASH phenotype. Thus, elevated proinflammatory responses in macrophages likely contribute to, in large part, increased intestinal inflammation in NASH.Item Modeling the transcriptome of genital tract epithelial cells and macrophages in healthy mucosa versus mucosa inflamed by Chlamydia muridarum infection(Oxford University Press, 2015-12) Johnson, Raymond M.; Kerr, Micah S.; Department of Medicine, IU School of MedicineChlamydia trachomatis urogenital serovars are intracellular bacteria that parasitize human reproductive tract epithelium. As the principal cell type supporting bacterial replication, epithelial cells are central to Chlamydia immunobiology initially as sentries and innate defenders, and subsequently as collaborators in adaptive immunity-mediated bacterial clearance. In asymptomatic individuals who do not seek medical care a decisive struggle between C. trachomatis and host defenses occurs at the epithelial interface. For this study, we modeled the immunobiology of epithelial cells and macrophages lining healthy genital mucosa and inflamed/infected mucosa during the transition from innate to adaptive immunity. Upper reproductive tract epithelial cell line responses were compared to bone marrow-derived macrophages utilizing gene expression microarray technology. Those comparisons showed minor differences in the intrinsic innate defenses of macrophages and epithelial cells. Major lineage-specific differences in immunobiology relate to epithelial collaboration with adaptive immunity including an epithelial requirement for inflammatory cytokines to express MHC class II molecules, and a paucity and imbalance between costimulatory and coinhibitory ligands on epithelial cells that potentially limits sterilizing immunity (replication termination) to Chlamydia-specific T cells activated with limited or unconventional second signals.Item Nonsteroidal anti-inflammatory drugs sensitize epithelial cells to Clostridioides difficile toxin-mediated mitochondrial damage(American Association for the Advancement of Science, 2023) Soto Ocaña, Joshua; Bayard, Nile U.; Hart, Jessica L.; Thomas, Audrey K.; Furth, Emma E.; Lacy, D. Borden; Aronoff, David M.; Zackular, Joseph P.; Medicine, School of MedicineClostridioides difficile damages the colonic mucosa through the action of two potent exotoxins. Factors shaping C. difficile pathogenesis are incompletely understood but are likely due to the ecological factors in the gastrointestinal ecosystem, mucosal immune responses, and environmental factors. Little is known about the role of pharmaceutical drugs during C. difficile infection (CDI), but recent studies have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs) worsen CDI. The mechanism underlying this phenomenon remains unclear. Here, we show that NSAIDs exacerbate CDI by disrupting colonic epithelial cells (CECs) and sensitizing cells to C. difficile toxin-mediated damage independent of their canonical role of inhibiting cyclooxygenase (COX) enzymes. Notably, we find that NSAIDs and C. difficile toxins target the mitochondria of CECs and enhance C. difficile toxin-mediated damage. Our results demonstrate that NSAIDs exacerbate CDI by synergizing with C. difficile toxins to damage host cell mitochondria. Together, this work highlights a role for NSAIDs in exacerbating microbial infection in the colon.Item The oncogenic properties of Amot80 in mammary epithelia(2013-07) Ranahan, William P.; Wells, Clark D.; Herbert, Brittney-Shea; Quilliam, Lawrence; Wek, Ronald C.While breast cancer is the second most commonly diagnosed cancer worldwide, its causes and natural history are not well defined. The female mammary organ is unique in that it does not reach full maturity until the lactation cycle following pregnancy. This cycle entails extensive growth and reorganization of the primitive epithelial ductal network. Following lactation, these same epithelial cells undergo an equally extensive program of apoptosis and involution. The mammary gland's sensitivity to pro-growth and pro-apoptotic signals may partly explain its proclivity to develop cancers. For epithelial cells to become transformed they must lose intracellular organization known as polarity as differentiated epithelial tissues are refractory to aberrant growth. One essential component of epithelial to mesenchymal transition is the intrinsic capacity of cells to repurpose polarity constituents to promote growth. Recently, a novel mechanism of organ size control has been shown to repurpose the apical junctional associated protein Yap into the nucleus where it functions as a transcriptional coactivator promoting growth and dedifferentiation. The focus of my work has been on a family of adaptor proteins termed Amots that have been shown to scaffold Yap and inhibit growth signaling. Specifically, I have shown that the 80KDa form of Amot, termed Amot80, acts as a dominant negative to the other Amot proteins to promote cell growth while reducing cell differentiation. Amot80 was found to promote the prolonged activation of MAPK signaling. Further, Amot80 expression was also found to enhance the transcriptional activity of Yap. This effect likely underlies the ability of Amot80 to drive disorganized overgrowth of MCF10A cells grown in Matrigel̈™. Overall, these data suggest a mechanism whereby the balance of Amot proteins controls the equilibrium between growth and differentiation within mammary epithelial tissues.Item Reconstitution of mouse inner ear sensory development from pluripotent stem cells(2014-01) Koehler, Karl R.; Oxford, Gerry S.; Cummins, Theodore R.; Hashino, Eri; Meyer, Jason S.; Zhang, XinThe inner ear contains specialized sensory epithelia that detect head movements, gravity and sound. Hearing loss and imbalance are primarily caused by degeneration of the mechanosensitive hair cells in sensory epithelia or the sensory neurons that connect the inner ear to the brain. The controlled derivation of inner ear sensory epithelia and neurons from pluripotent stem cells will be essential for generating in vitro models of inner ear disorders or developing cell-based therapies. Despite some recent success in deriving hair cells from mouse embryonic stem (ES) cells, it is currently unclear how to derive inner ear sensory cells in a fully defined and reproducible manner. Progress has likely been hindered by what is known about induction of the nonneural and preplacodal ectoderm, two critical precursors during inner ear development. The studies presented here report the step-wise differentiation of inner ear sensory epithelia from mouse ES cells in three-dimensional culture. We show that nonneural, preplacodal and pre-otic epithelia can be generated from ES cell aggregates by precise temporal control of BMP, TGFβ and FGF signaling, mimicking in vivo development. Later, in a self-guided process, vesicles containing supporting cells emerge from the presumptive otic epithelium and give rise to hair cells with stereocilia bundles and kinocilium. Remarkably, the vesicles developed into large cysts with sensory epithelia reminiscent of vestibular sense organs (i.e. the utricle, saccule and crista), which sense head movements and gravity in the animal. We have designated these stem cell-derived structures inner ear organoids. In addition, we discovered that sensory-like neurons develop alongside the organoids and form putative synapses with hair cells in a similar fashion to the hair cell-to-neuron circuit that forms in the developing embryo. Our data thus establish a novel in vitro model of inner ear organogenesis that can be used to gain deeper insight into inner ear development and disorder.Item Relationship between nugent score and vaginal epithelial exfoliation(PLoS, 2017-05-31) Amegashie, Courtney P.; Gilbert, Nicole M.; Peipert, Jeffrey F.; Allsworth, Jenifer E.; Lewis, Warren G.; Lewis, Amanda L.; Obstetrics and Gynecology, School of MedicineOBJECTIVE: Clue cells characteristic of bacterial vaginosis (BV) are thought to arise due to exfoliation of the vaginal epithelium; however, there is little published data connecting total numbers of epithelial cells to markers of BV. The purpose of this study was to enumerate exfoliated epithelial cells (independent of clue cells) and examine the relationship to Nugent score. STUDY DESIGN: We conducted a cross-sectional sub-study of the Contraceptive CHOICE Project cohort. Vaginal swabs were used to create vaginal smears for Gram staining and these smears were later scored using the Nugent method, and then two blinded observers used microscopy to enumerate exfoliated epithelial cells. The degree of epithelial cell exfoliation was compared between women diagnosed as BV-negative (Nugent score 0-3), BV-intermediate (Nugent score 4-6), and BV-positive (Nugent score 7-10). BV specimens (Nugent 7-10) were randomly matched to specimens in the two other groups (Nugent low and Nugent-intermediate), in order to avoid comparing groups of women with potentially confounding baseline demographics. RESULTS: Exfoliated epithelial cell counts were higher in the vaginal smears from BV-positive women compared with BV-negative women. Higher levels of epithelial exfoliation were also evident in BV-intermediate women compared to those with low Nugent scores. After adjustment for clustering introduced by matching, the incidence ratio of increased epithelial cell counts was 2.09 (95% CI 1.50-2.90) for the BV-intermediate women and 1.71 (95% CI 1.23-2.38) for the BV positive women. CONCLUSION: A vaginal epithelial exfoliation phenotype was measured in both Nugent-defined BV-positive and BV-intermediate women. Bacterial vaginosis and intermediate status (Nugent score >3) was associated with significantly more vaginal epithelial exfoliation compared to women with Lactobacillus-dominated microbiotas (Nugent 0-3).