ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Epimeric vitamin D"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Epimeric vitamin D and cardiovascular structure and function in advanced CKD and after kidney transplantation
    (Oxford University Press, 2024) Arroyo, Eliott; Leber, Cecilia A.; Burney, Heather N.; Li, Yang; Li, Xiaochun; Lu, Tzong-shi; Jones, Glenville; Kaufmann, Martin; Ting, Stephen M. S.; Hiemstra, Thomas F.; Zehnder, Daniel; Lim, Kenneth; Medicine, School of Medicine
    Background: 25-hydroxyvitamin D can undergo C-3 epimerization to produce 3-epi-25(OH)D3. 3-epi-25(OH)D3 levels decline in chronic kidney disease (CKD), but its role in regulating the cardiovascular system is unknown. Herein, we examined the relationship between 3-epi-25(OH)D3, and cardiovascular functional and structural endpoints in patients with CKD. Methods: We examined n = 165 patients with advanced CKD from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) study cohort, including those who underwent kidney transplant (KTR, n = 76) and waitlisted patients who did not (NTWC, n = 89). All patients underwent cardiopulmonary exercise testing and echocardiography at baseline, 2 months and 12 months. Serum 3-epi-25(OH)D3 was analyzed by liquid chromatography-tandem mass spectrometry. Results: Patients were stratified into quartiles of baseline 3-epi-25(OH)D3 (Q1: <0.4 ng/mL, n = 51; Q2: 0.4 ng/mL, n = 26; Q3: 0.5-0.7 ng/mL, n = 47; Q4: ≥0.8 ng/mL, n = 41). Patients in Q1 exhibited lower peak oxygen uptake [VO2Peak = 18.4 (16.2-20.8) mL/min/kg] compared with Q4 [20.8 (18.6-23.2) mL/min/kg; P = .009]. Linear mixed regression model showed that 3-epi-25(OH)D3 levels increased in KTR [from 0.47 (0.30) ng/mL to 0.90 (0.45) ng/mL] and declined in NTWC [from 0.61 (0.32) ng/mL to 0.45 (0.29) ng/mL; P < .001]. Serum 3-epi-25(OH)D3 was associated with VO2Peak longitudinally in both groups [KTR: β (standard error) = 2.53 (0.56), P < .001; NTWC: 2.73 (0.70), P < .001], but was not with left ventricular mass or arterial stiffness. Non-epimeric 25(OH)D3, 24,25(OH)2D3 and the 25(OH)D3:24,25(OH)2D3 ratio were not associated with any cardiovascular outcome (all P > .05). Conclusions: Changes in 3-epi-25(OH)D3 levels may regulate cardiovascular functional capacity in patients with advanced CKD.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University