- Browse by Subject
Browsing by Subject "Epigallocatechin-3-gallate"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Differential effects of Epigallocatechin-3-gallate containing supplements on correcting skeletal defects in a Down syndrome mouse model(Wiley, 2016-04) Abeysekera, Irushi; Thomas, Jared; Georgiadis, Taxiarchis M.; Berman, Alycia G.; Hammond, Max A.; Dria, Karl J.; Wallace, Joseph M.; Roper, Randall J.; Biology, School of ScienceSCOPE: Down syndrome (DS), caused by trisomy of human chromosome 21 (Hsa21), is characterized by a spectrum of phenotypes including skeletal abnormalities. The Ts65Dn DS mouse model exhibits similar skeletal phenotypes as humans with DS. DYRK1A, a kinase encoded on Hsa21, has been linked to deficiencies in bone homeostasis in DS mice and individuals with DS. Treatment with Epigallocatechin-3-gallate (EGCG), a known inhibitor of Dyrk1a, improves some skeletal abnormalities associated with DS in mice. EGCG supplements are widely available but the effectiveness of different EGCG-containing supplements has not been well studied. METHODS AND RESULTS: Six commercially available supplements containing EGCG were analyzed, and two of these supplements were compared with pure EGCG for their impact on skeletal deficits in a DS mouse model. The results demonstrate differential effects of commercial supplements on correcting skeletal abnormalities in Ts65Dn mice. Different EGCG-containing supplements display differences in degradation, polyphenol content, and effects on trisomic bone. CONCLUSION: This work suggests that the dose of EGCG and composition of EGCG-containing supplements may be important in correcting skeletal deficits associated with DS. Careful analyses of these parameters may lead to a better understanding of how to improve skeletal and other deficits that impair individuals with DS.Item Effects of artificial honey and epigallocatechin-3-gallate on streptococcus pyogenes(Springer, 2022-08-26) Jiang, Xiaoge; Lin, An; Li, Shijia; Shi, Yangyang; Zhou, Fangjie; Felix Gomez, Grace Gomez; Gregory, Richard L.; Zhang, Chaoliang; Chen, Song; Huang, Ruijie; Oral Pathology, Medicine and Radiology, School of DentistryBackground Streptococcus pyogenes is an important global human pathogen that causes pharyngitis, and antibacterial therapy has become an important part of the overall therapy for pharyngitis. As natural derivatives, honey and green tea are often recommended for patients with pharyngitis in traditional Chinese medicine without experimental theoretical basis on wether the combined effect of honey and green tea on pharyngitis is better than they alone. The aims of this study were to explore the effects of artificial honey (AH) and epigallocatechin-3-gallate (EGCG) on S. pyogenes and elucidate the possible mechanisms, which were investigated using MIC (the minimum inhibitory concentration), FIC (fractional inhibitory concentration) index, growth pattern, biofilm formation and RT-qPCR. Results The MIC of AH on S. pyogenes was 12.5% (v/v) and the MIC of EGCG was 1250 μg/ml. The FIC index of AH and EGCG was 0.5. The planktonic cell growth, growth pattern and biofilm formation assays showed that AH and EGCG mixture had stronger inhibitory effect on S. pyogenes than they alone. RT-qPCR confirmed that the expression of hasA and luxS gene were inhibited by AH and EGCG mixture. Conclusions AH and EGCG mixture can inhibit the planktonic cell growth, biofilm formation and some virulence genes expression of S. pyogenes, better than they alone. The combination of honey and green tea have the potential to treat pharyngitis as natural derivatives, avoiding drug resistance and double infection.Item EGCG Treatment on Ts65Dn Mice Suggests a Possible Correlation in Cognitive Development Deficit Reduction(Office of the Vice Chancellor for Research, 2014-04-11) Taboada, Maria Fatima Delgado; Abeysekera, Irushi S.; Roper, Randall J.Down syndrome (DS) is caused by trisomy of human chromosome 21 (Ts21), affecting 1 in 700 live births. Ts21 results in about 80 phenotypes of which intellectual disability (ID) is one of the most debilitating. DYRK1A, found in 3 copies in individuals with Ts21 has been linked to alterations in morphology and function of the brain resulting in ID. Epigallocatechin-3-gallate (EGCG), a specific inhibitor of Dyrk1a activity has been hypothesized as a possible treatment for the overexpression of this gene, reducing the deficits caused by Dryk1a. Using the Ts65Dn mouse model, we examined the effects on hippocampal dependent learning and memory in the novel object recognition task (NOR) using mice of 3-6 weeks of age (adolescent mice). They were given free access to EGCG (0.124 mg/mL) in their drinking water for 21 days. They were then tested for cognitive improvement through NOR. Ts65Dn and control mice (treated and untreated) were subjected to 3 days of testing with 15 minute sessions per day consisting of habituation, exposure, and test day. All procedures were recorded and analyzed to determine time spent exploring novel object in relation to familiar. Our current results suggest that s65Dn mice do not spend as much time exploring the novel object as euploid mice and there exists a genotype effect, but treatment is not correcting the learning and memory deficit. We hypothesize that continuous EGCG treatment may be needed in order to see cognitive deficit reduction in adolescent mice.