- Browse by Subject
Browsing by Subject "Epidermis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Acute Febrile Neutrophilic Dermatosis after Deep Inferior Epigastric Perforator Flap Breast Reconstruction(KoreaMed Synapse, 2016-09) Chu, Michael W.; Cook, Julia A.; Hazen, Alexes; Department of Surgery, IU School of MedicineItem Estrogen modulates mesenchyme-epidermis interactions in the adult nipple(Company of Biologists, 2017-04-15) Wu, Hsing-Jung; Oh, Ji Won; Spandau, Dan F.; Tholpady, Sunil; Diaz, Jesus, III; Schroeder, Laura J.; Offutt, Carlos D.; Glick, Adam B.; Plikus, Maksim V.; Koyama, Sachiko; Foley, John; Medicine, School of MedicineMaintenance of specialized epidermis requires signals from the underlying mesenchyme; however, the specific pathways involved remain to be identified. By recombining cells from the ventral skin of the K14-PTHrP transgenic mice [which overexpress parathyroid hormone-related protein (PTHrP) in their developing epidermis and mammary glands] with those from wild type, we show that transgenic stroma is sufficient to reprogram wild-type keratinocytes into nipple-like epidermis. To identify candidate nipple-specific signaling factors, we compared gene expression signatures of sorted Pdgfrα-positive ventral K14-PTHrP and wild-type fibroblasts, identifying differentially expressed transcripts that are involved in WNT, HGF, TGFβ, IGF, BMP, FGF and estrogen signaling. Considering that some of the growth factor pathways are targets for estrogen regulation, we examined the upstream role of this hormone in maintaining the nipple. Ablation of estrogen signaling through ovariectomy produced nipples with abnormally thin epidermis, and we identified TGFβ as a negatively regulated target of estrogen signaling. Estrogen treatment represses Tgfβ1 at the transcript and protein levels in K14-PTHrP fibroblasts in vitro, while ovariectomy increases Tgfb1 levels in K14-PTHrP ventral skin. Moreover, ectopic delivery of Tgfβ1 protein into nipple connective tissue reduced epidermal proliferation. Taken together, these results show that specialized nipple epidermis is maintained by estrogen-induced repression of TGFβ signaling in the local fibroblasts.Item Loss of Corneal Sensory Nerve Fibers in SIV-Infected Macaques: An Alternate Approach to Investigate HIV-Induced PNS Damage(Elsevier B.V., 2014-06) Dorsey, Jamie L.; Mangus, Lisa M.; Oakley, Jonathan D.; Beck, Sarah E.; Kelly, Kathleen M.; Queen, Suzanne E.; Metcalf Pate, Kelly A.; Adams, Robert J.; Marfurt, Carl F.; Mankowski, Joseph L.; Department of Anatomy & Cell Biology, IU School of MedicinePeripheral neuropathy is the most frequent neurological complication of HIV infection, affecting more than one-third of infected patients, including patients treated with antiretroviral therapy. Although emerging noninvasive techniques for corneal nerve assessments are increasingly being used to diagnose and monitor peripheral neuropathies, corneal nerve alterations have not been characterized in HIV. Here, to determine whether SIV infection leads to corneal nerve fiber loss, we immunostained corneas for the nerve fiber marker βIII tubulin. We developed and applied both manual and automated methods to measure nerves in the corneal subbasal plexus. These counting methods independently indicated significantly lower subbasal corneal nerve fiber density among SIV-infected animals that rapidly progressed to AIDS compared with slow progressors. Concomitant with decreased corneal nerve fiber density, rapid progressors had increased levels of SIV RNA and CD68-positive macrophages and expression of glial fibrillary acidic protein by glial satellite cells in the trigeminal ganglia, the location of the neuronal cell bodies of corneal sensory nerve fibers. In addition, corneal nerve fiber density was directly correlated with epidermal nerve fiber length. These findings indicate that corneal nerve assessment has great potential to diagnose and monitor HIV-induced peripheral neuropathy and to set the stage for introducing noninvasive techniques to measure corneal nerve fiber density in HIV clinical settings.Item Transcriptomic Analysis of Healthy and Atopic Dermatitis Samples Reveals the Role of IL-37 in Human Skin(American Association of Immunologists, 2021-10-26) Zhou, Jiajun; Gemperline, David C.; Turner, Matthew J.; Oldach, Jonathan; Molignano, Jennifer; Sims, Jonathan T.; Stayrook, Keith R.; Dermatology, School of MedicineAtopic dermatitis (AD) is a chronic inflammatory skin disease that affects up to one in five children and millions of adults in developed countries. Clinically, AD skin lesions manifest as subacute and/or chronic lichenified eczematous plaques, which are often intensely pruritic and prone to secondary bacterial and viral infections. Despite the emergence of novel therapeutic agents, treatment options and outcomes for AD remain suboptimal. An improved understanding of AD pathogenesis may help improve patient outcomes. Dysregulated Th2-polarized skin inflammation and impaired skin barrier function interact to drive AD pathogenesis; however, much remains to be understood about the molecular mechanisms underlying this interplay. The current study used published clinical trial datasets to define a skin-related AD gene signature. This meta-analysis revealed significant reductions in IL1F7 transcripts (encodes IL-37) in AD patient samples. Reduced IL1F7 correlated with lower transcripts for key skin barrier function genes in the epidermal differentiation complex. Immunohistochemical analysis of normal (healthy) human skin specimens and an in vitro three-dimensional human skin model localized IL-37 protein to the epidermis. In comparison with normal human skin, IL-37 levels were decreased in AD patient skin. Addition of Th2 cytokines to the aforementioned in vitro three-dimensional skin model recapitulates key aspects of AD skin and was sufficient to reduce epidermal IL-37 levels. Image analysis also indicated close relationship between epidermal IL-37 and skin epidermal differentiation complex proteins. These findings suggest IL-37 is intimately linked to normal keratinocyte differentiation and barrier function and implicates IL-37 as a potential biomarker and therapeutic target for AD.