- Browse by Subject
Browsing by Subject "Epidermal growth factor receptor (EGFR)"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Targeted elastin-like polypeptide fusion protein for near-infrared imaging of human and canine urothelial carcinoma(Impact Journals, 2022-09-06) Aayush, Aayush; Darji, Saloni; Dhawan, Deepika; Enstrom, Alexander; Broman, Meaghan M.; Idrees, Muhammad T.; Kaimakliotis, Hristos; Ratliff, Timothy; Knapp, Deborah; Thompson, David; Pathology and Laboratory Medicine, School of MedicineCystoscopic visualization of bladder cancer is an essential method for initial bladder cancer detection and diagnosis, transurethral resection, and monitoring for recurrence. We sought to develop a new intravesical imaging agent that is more specific and sensitive using a polypeptide based NIR (near-infrared) probe designed to detect cells bearing epidermal growth factor receptors (EGFR) that are overexpressed in 80% of urothelial carcinoma (UC) cases. The NIR imaging agent consisted of an elastin like polypeptide (ELP) fused with epidermal growth factor (EGF) and conjugated to Cy5.5 to give Cy5.5-N24-EGF as a NIR contrast agent. In addition to evaluation in human cells and tissues, the agent was tested in canine cell lines and tissue samples with naturally occurring invasive UC. Flow cytometry and confocal microscopy were used to test cell-associated fluorescence of the probe in T24 human UC cells, and in K9TCC-SH (high EGFR expression) and K9TCC-Original (low EGF expression) canine cell lines. The probe specifically engages these cells through EGFR within 15 min of incubation and reached saturation within a clinically relevant 1 h timeframe. Furthermore, ex vivo studies with resected canine and human bladder tissues showed minimal signal from normal adjacent tissue and significant NIR fluorescence labeling of tumor tissue, in good agreement with our in vitro findings. Differential expression of EGFR ex vivo was revealed by our probe and confirmed by anti-EGFR immunohistochemical staining. Taken together, our data suggests Cy5.5-ELP-EGF is a NIR probe with improved sensitivity and selectivity towards BC that shows excellent potential for clinical translation.Item Tumor-intrinsic role of ICAM-1 in driving metastatic progression of triple-negative breast cancer through direct interaction with EGFR(Springer Nature, 2024-10-16) Kang, Jae‑Hyeok; Uddin, Nizam; Kim, Seungmo; Zhao, Yi; Yoo, Ki‑Chun; Kim, Min‑Jung; Hong, Sung‑Ah; Bae, Sangsu; Lee, Jeong‑Yeon; Shin, Incheol; Jin, Young Woo; O’Hagan, Heather M.; Yi, Joo Mi; Lee, Su‑Jae; Medical and Molecular Genetics, School of MedicineTriple-negative breast cancer (TNBC), the most aggressive subtype, presents a critical challenge due to the absence of approved targeted therapies. Hence, there is an urgent need to identify effective therapeutic targets for this condition. While epidermal growth factor receptor (EGFR) is prominently expressed in TNBC and recognized as a therapeutic target, anti-EGFR therapies have yet to gain approval for breast cancer treatment due to their associated side effects and limited efficacy. Here, we discovered that intercellular adhesion molecule-1 (ICAM-1) exhibits elevated expression levels in metastatic breast cancer and serves as a pivotal binding adaptor for EGFR activation, playing a crucial role in malignant progression. The activation of EGFR by tumor-expressed ICAM-1 initiates biased signaling within the JAK1/STAT3 pathway, consequently driving epithelial-to-mesenchymal transition and facilitating heightened metastasis without influencing tumor growth. Remarkably, ICAM-1-neutralizing antibody treatment significantly suppressed cancer metastasis in a breast cancer orthotopic xenograft mouse model. In conclusion, our identification of ICAM-1 as a novel tumor intrinsic regulator of EGFR activation offers valuable insights for the development of TNBC-specific anti-EGFR therapies.