ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Ependymoglial cells"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Global mapping of BMAL1 protein-DNA interactions in human retinal Müller cells
    (Molecular Vision, 2024-11-10) Luo, Qianyi; Sangani, Neel; Abhyankar, Surabhi; Somalraju, Sahiti; Janga, Sarath Chandra; Bhatwadekar, Ashay D.; Ophthalmology, School of Medicine
    The circadian clock, a conserved biologic timekeeping mechanism, is pivotal in orchestrating rhythmic physiologic processes. While extensively studied in the central clock, the involvement of BMAL1 in peripheral clocks, particularly in human Müller cells, remains underexplored. Müller cells, critical for retinal homeostasis, may unveil novel insights into circadian regulation. Employing ChIP-sequencing, we comprehensively mapped BMAL1 binding sites in human Müller cells. The analysis identified 275 reproducible peaks, with predominant distribution across promoters (26.6%), intronic (26.3%), and intergenic (22.1%) regions, with 80% of these confident peaks linked to protein-coding genes. Differential peak analysis revealed 89 unique genes significantly enriched with BMAL1 sites in their promoters, while functional enrichment of the associated genes indicated key biologic processes such as circadian regulation of gene expression, photoperiodism, and glucocorticoid receptor signaling pathway regulation. Motif analysis revealed a highly conserved 6-nucleotide motif, CACGTG, appearing in 89.09% of the peaks. Analysis of the binding sites across genomic regions highlighted the robust BMAL1 binding, further confirmed by qPCR validation of circadian targets such as G6PC3, CIART, PER1, and TXNIP, which are critical for Müller cell health, along with SHMT2 and MALAT1, which have emerged as novel genes that may have implications for Müller cell health. Our findings unveil the regulatory landscape of BMAL1 in Müller cells, contributing to a broader understanding of the clock-mediated mechanism in ocular tissues. These insights hold therapeutic potential for circadian-related retinal diseases, presenting avenues for chronotherapeutic interventions.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University