- Browse by Subject
Browsing by Subject "Eosinophils"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Caspofungin Increases Fungal Chitin and Eosinophil and γδ T Cell-Dependent Pathology in Invasive Aspergillosis(American Association of Immunologists, 2017-07-15) Amarsaikhan, Nansalmaa; Sands, Ethan M.; Shah, Anand; Abdolrasouli, Ali; Reed, Anna; Slaven, James E.; Armstrong-James, Darius; Templeton, Steven P.; Microbiology and Immunology, School of MedicineThe polysaccharide-rich fungal cell wall provides pathogen-specific targets for antifungal therapy and distinct molecular patterns that stimulate protective or detrimental host immunity. The echinocandin antifungal caspofungin inhibits synthesis of cell wall β-1,3-glucan and is used for prophylactic therapy in immune-suppressed individuals. However, breakthrough infections with fungal pathogen Aspergillus fumigatus are associated with caspofungin prophylaxis. In this study, we report in vitro and in vivo increases in fungal surface chitin in A. fumigatus induced by caspofungin that was associated with airway eosinophil recruitment in neutropenic mice with invasive pulmonary aspergillosis (IA). More importantly, caspofungin treatment of mice with IA resulted in a pattern of increased fungal burden and severity of disease that was reversed in eosinophil-deficient mice. Additionally, the eosinophil granule proteins major basic protein and eosinophil peroxidase were more frequently detected in the bronchoalveolar lavage fluid of lung transplant patients diagnosed with IA that received caspofungin therapy when compared with azole-treated patients. Eosinophil recruitment and inhibition of fungal clearance in caspofungin-treated mice with IA required RAG1 expression and γδ T cells. These results identify an eosinophil-mediated mechanism for paradoxical caspofungin activity and support the future investigation of the potential of eosinophil or fungal chitin-targeted inhibition in the treatment of IA.Item Clinical correlations of recent developments in the pathogenesis of atopic dermatitis(Scielo, 2008-02) Sehra, Sarita; Holbreich, Mark; Kaplan, Mark H.; Tuana, Florencia M. Barbé; Mousdicas, Nico; Travers, Jeffrey B.; Pediatrics, School of MedicineAtopic dermatitis is a chronic inflammatory skin disease with a steadily increasing prevalence affecting 10-20 of infants and 1-3 of adults globally. It is often the first clinical manifestation of atopic disease preceding asthma and allergic rhinitis. Probably half of the children with atopic dermatitis develop some other form of atopic disease later in life. The pathogenesis involves a complex interplay of factors including genetic predisposition due to altered immune or skin barrier function, interactions with the environment such as food and allergen exposures, and infectious triggers of inflammation. In this review, we summarize the recent advances in understanding the contribution of different factors in the pathophysiology of atopic dermatitis and how insights provide new therapeutic potential for its treatment.Item Lunasin alleviates allergic airway inflammation while increases antigen-specific Tregs(PLoS, 2015-02-03) Yang, Xiaowei; Zhu, Jingjing; Tung, Chun-Yu; Gardiner, Gail; Wang, Qun; Chang, Hua-Chen; Zhou, Baohua; Department of Pediatrics, IU School of MedicineLunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.Item Reciprocal Inhibition of Adiponectin and Innate Lung Immune Responses to Chitin and Aspergillus fumigatus(Frontiers, 2019-05-10) Amarsaikhan, Nansalmaa; Stolz, Dylan J.; Wilcox, Amber; Sands, Ethan M.; Tsoggerel, Angar; Gravely, Haley; Templeton, Steven P.; Microbiology and Immunology, School of MedicineChitin is a structural biopolymer found in numerous organisms, including pathogenic fungi, and recognized as an immune-stimulating pathogen associated molecular pattern by pattern recognition molecules of the host immune system. However, programming and regulation of lung innate immunity to chitin inhalation in the context of inhalation of fungal pathogens such as Aspergillus fumigatus is complex and our understanding incomplete. Here we report that the systemic metabolism-regulating cytokine adiponectin is decreased in the lungs and serum of mice after chitin inhalation, with a concomitant decrease in surface expression of the adiponectin receptor AdipoR1 on lung leukocytes. Constitutive lung expression of acidic mammalian chitinase resulted in decreased inflammatory cytokine gene expression and neutrophil recruitment, but did not significantly affect lung adiponectin transcription. Exogenous recombinant adiponectin specifically dampened airway chitin-mediated eosinophil recruitment, while adiponectin deficiency resulted in increased airway eosinophils. The presence of adiponectin also resulted in decreased CCL11-mediated migration of bone marrow-derived eosinophils. In contrast to purified chitin, aspiration of viable conidia from the high chitin-expressing A. fumigatus isolate Af5517 resulted in increased neutrophil recruitment and inflammatory cytokine gene expression in adiponectin-deficient mice, while no significant changes were observed in response to the isolate Af293. Our results identify a novel role for the adiponectin pathway in inhibition of lung inflammatory responses to chitin and A. fumigatus inhalation.Item Strongyloides stercoralis Infection in Solid Organ Transplant Patients Is Associated With Eosinophil Activation and Intestinal Inflammation: A Cross-sectional Study(Oxford University Press, 2020-12) Clark, Eva; Pritchard, Haley; Hemmige, Vagish; Restrepo, Alejandro; Bautista, Karla; Damania, Ashish; Ricciardi, Alessandra; Nutman, Thomas B.; Mejia, Rojelio; Medicine, School of MedicineBackground: Strongyloidiasis can cause devastating morbidity and death in immunosuppressed patients. Identification of reliable biomarkers for strongyloidiasis in immunosuppressed patients is critical for the prevention of severe disease. Methods: In this cross-sectional study of solid organ transplant (SOT) candidates and recipients, we quantified Strongyloides-specific IgG to the recombinant NIE-Strongyloides antigen and/or to a soluble extract of S. stercoralis somatic antigens ("crude antigen") using enzyme-linked immunosorbent assays (ELISAs). We also measured peripheral eosinophilia, 4 different eosinophil granule proteins, and intestinal fatty acid-binding protein (IFABP). Results: We evaluated serum biomarkers in 149 individuals; 77 (52%) pre-SOT and 72 (48%) post-SOT. Four percent (6/149) tested positive by NIE ELISA and 9.6% (11/114) by crude antigen ELISA (overall seropositivity of 9.4% [14/149]). Seropositive patients had higher absolute eosinophil counts (AECs) than seronegative patients (P = .004). AEC was positively correlated to the levels of eosinophil granule proteins eosinophil cationic protein (ECP) and eosinophil peroxidase (EPO) (P < .05), while IFABP was positively related to the 2 other eosinophil granule proteins (major basic protein [MBP] and eosinophil-derived neurotoxin [EDN]; Spearman's r = 0.3090 and 0.3778, respectively; P < .05; multivariate analyses slopes = 0.70 and 2.83, respectively). Conclusions: This study suggests that, in SOT patients, strongyloidiasis triggers both eosinophilia and eosinophil activation, the latter being associated with intestinal inflammation. These data provide insight into the pathogenesis of S. stercoralis infection in the immunocompromised population at high risk of severe strongyloidiasis syndromes.Item β-Glucosylceramide From Allergic Mothers Enhances Offspring Responsiveness to Allergen(Frontiers Media, 2021-02) Walker, Matthew T.; Ferrie, Ryan P.; Hoji, Aki; Schroeder-Carter, Lindsay M.; Cohen, Jacob D.; Schnaar, Ronald L.; Cook-Mills, Joan M.; Pediatrics, School of MedicineIn animals and humans, offspring of allergic mothers have increased responsiveness to allergen and the allergen-specificity of the offspring can be different than that of the mother. In our preclinical models, the mother's allergic responses influence development of the fetus and offspring by elevating numbers of cells in dendritic cell subsets. A major question is the identity of maternal factors of allergic mothers that alter offspring development of responsiveness to allergen. Lipids are altered during allergic responses and lipids are transported to the fetus for growth and formation of fetal membranes. We hypothesized that pro-inflammatory lipids, that are elevated in allergic mothers, are transported to the fetus and regulate fetal immune development. We demonstrate in this report that there was a significant 2-fold increase in β-glucosylceramides (βGlcCer) in allergic mothers, the fetal liver and her offspring. The βGlcCer were transported from mother's plasma, across the placenta, to the fetus and in breastmilk to the offspring. Administration of βGlcCer to non-allergic mothers was sufficient for offspring responses to allergen. Importantly, maternal administration of a clinically relevant pharmacological inhibitor of βGlcCer synthase returned βGlcCer to normal levels in the allergic mothers and her offspring and blocked the offspring increase in dendritic cell subsets and offspring allergen responsiveness. In summary, allergic mothers had increased βGlcCer that was transported to offspring and mediated increases in offspring DCs and responsiveness to allergen. These data have a significant impact on our understanding of mechanisms for development of allergies in offspring of allergic mothers and have the potential to lead to novel interventions that significantly impact risk for allergic disease early in life.