ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Environmental sciences"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Stable isotope variations of dew under three different climates
    (Springer Nature, 2022-02-14) Tian, Chao; Du, Kun; Wang, Lixin; Zhang, Xiao; Li, Fadong; Jiao, Wenzhe; Beysens, Daniel; Kaseke, Kudzai Farai; Medici, Marie-Gabrielle; Earth Sciences, School of Science
    As a supplementary or the only water source in dry regions, dew plays a critical role in the survival of organisms. The new hydrological tracer 17O-excess, with almost sole dependence on relative humidity, provides a new way to distinguish the evaporation processes and reconstruct the paleoclimate. Up to now, there is no published daily dew isotope record on δ2H, δ18O, δ17O, d-excess, and 17O-excess. Here, we collected daily dew between July 2014 and April 2018 from three distinct climatic regions (i.e., Gobabeb in the central Namib Desert with desert climate, Nice in France with Mediterranean climate, and Indianapolis in the central United States with humid continental climate). The δ2H, δ18O, and δ17O of dew were simultaneously analyzed using a Triple Water Vapor Isotope Analyzer based on Off-Axis Integrated Cavity Output Spectroscopy technique, and then d-excess and 17O-excess were calculated. This report presents daily dew isotope dataset under three climatic regions. It is useful for researchers to use it as a reference when studying global dew dynamics and dew formation mechanisms.
  • Loading...
    Thumbnail Image
    Item
    Triple isotope variations of monthly tap water in China
    (Nature Publishing Group, 2020-10-12) Tian, Chao; Wang, Lixin; Jiao, Wenzhe; Li, Fadong; Tian, Fuqiang; Zhao, Sihan; Earth Sciences, School of Science
    Tap water isotopic compositions could potentially record information on local climate and water management practices. A new water isotope tracer 17O-excess became available in recent years providing additional information of the various hydrological processes. Detailed data records of tap water 17O-excess have not been reported. In this report, monthly tap water samples (n = 652) were collected from December 2014 to November 2015 from 92 collection sites across China. The isotopic composition (δ2H, δ18O, and δ17O) of tap water was analyzed by a Triple Water Vapor Isotope Analyzer (T-WVIA) based on Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) technique and two second-order isotopic variables (d-excess and 17O-excess) were calculated. The geographic location information of the 92 collection sites including latitude, longitude, and elevation were also provided in this dataset. This report presents national-scale tap water isotope dataset at monthly time scale. Researchers and water resource managers who focus on the tap water issues could use them to probe the water source and water management strategies at large spatial scales.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University