- Browse by Subject
Browsing by Subject "Environmental exposure"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Asking the Right Questions About Secondhand Smoke(Oxford University Press, 2021) Klein, Jonathan D.; Chamberlin, Margaret E.; Kress, Elizabeth A.; Geraci, Mark W.; Rosenblatt, Susan; Boykan, Rachel; Jenssen, Brian; Rosenblatt, Stanley M.; Milberger, Sharon; Adams, William G.; Goldstein, Adam O.; Rigotti, Nancy A.; Hovell, Melbourne F.; Holm, Amanda L.; Vandivier, Richard W.; Croxton, Thomas L.; Young, Patricia L.; Blissard, Lani; Jewell, Kate; Richardson, Leisa; Ostrow, John; Resnick, Elissa A.; Medicine, School of MedicineIntroduction: Despite knowledge about major health effects of secondhand tobacco smoke (SHS) exposure, systematic incorporation of SHS screening and counseling in clinical settings has not occurred. Methods: A three-round modified Delphi Panel of tobacco control experts was convened to build consensus on the screening questions that should be asked and identify opportunities and barriers to SHS exposure screening and counseling. The panel considered four questions: (1) what questions should be asked about SHS exposure; (2) what are the top priorities to advance the goal of ensuring that these questions are asked; (3) what are the barriers to achieving these goals; and (4) how might these barriers be overcome. Each panel member submitted answers to the questions. Responses were summarized and successive rounds were reviewed by panel members for consolidation and prioritization. Results: Panelists agreed that both adults and children should be screened during clinical encounters by asking if they are exposed or have ever been exposed to smoke from any tobacco products in their usual environment. The panel found that consistent clinician training, quality measurement or other accountability, and policy and electronic health records interventions were needed to successfully implement consistent screening. Conclusions: The panel successfully generated screening questions and identified priorities to improve SHS exposure screening. Policy interventions and stakeholder engagement are needed to overcome barriers to implementing effective SHS screening. Implications: In a modified Delphi panel, tobacco control and clinical prevention experts agreed that all adults and children should be screened during clinical encounters by asking if they are exposed or have ever been exposed to smoke from tobacco products. Consistent training, accountability, and policy and electronic health records interventions are needed to implement consistent screening. Increasing SHS screening will have a significant impact on public health and costs.Item Association between increasing agricultural use of 2,4-D and population biomarkers of exposure: findings from the National Health and Nutrition Examination Survey, 2001-2014(BMC, 2022-02-10) Freisthler, Marlaina S.; Robbins, C. Rebecca; Benbrook, Charles M.; Young, Heather A.; Haas, David M.; Winchester, Paul D.; Perry, Melissa J.; Obstetrics and Gynecology, School of MedicineBackground: 2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most extensively used herbicides in the United States. In 2012, 2,4-D was the most widely used herbicide in non-agricultural settings and the fifth most heavily applied pesticide in the US agricultural sector. The objective of this study was to examine trends in 2,4-D urinary biomarker concentrations to determine whether increases in 2,4-D application in agriculture are associated with increases in biomonitoring levels of urine 2,4-D. Methods: Data from the National Health and Nutrition Examination Survey (NHANES) with available urine 2,4-D biomarker measurements from survey cycles between 2001 and 2014 were utilized. Urine 2,4-D values were dichotomized using the highest limit of detection (LOD) across all cycles (0.40 μg/L or 0.4 ppb). Agricultural use of 2,4-D was estimated by compiling publicly available federal and private pesticide application data. Logistic regression models adjusted for confounders were fitted to evaluate the association between agricultural use of 2,4-D and urine 2,4-D level above the dichotomization threshold. Results: Of the 14,395 participants included in the study, 4681 (32.5%) had urine 2,4-D levels above the dichotomization threshold. The frequency of participants with high 2,4-D levels increased significantly (p < .0001), from a low of 17.1% in 2001-2002 to a high of 39.6% in 2011-2012. The adjusted odds of high urinary 2,4-D concentrations associated with 2,4-D agricultural use (per ten million pounds applied) was 2.268 (95% CI: 1.709, 3.009). Children ages 6-11 years (n = 2288) had 2.1 times higher odds of having high 2,4-D urinary concentrations compared to participants aged 20-59 years. Women of childbearing age (age 20-44 years) (n = 2172) had 1.85 times higher odds than men of the same age. Conclusions: Agricultural use of 2,4-D has increased substantially from a low point in 2002 and it is predicted to increase further in the coming decade. Because increasing use is likely to increase population level exposures, the associations seen here between 2,4-D crop application and biomonitoring levels require focused biomonitoring and epidemiological evaluation to determine the extent to which rising use and exposures cause adverse health outcomes among vulnerable populations (particularly children and women of childbearing age) and highly exposed individuals (farmers, other herbicide applicators, and their families).Item Commentary: Novel strategies and new tools to curtail the health effects of pesticides(Springer Nature, 2021-08-03) Benbrook, Charles; Perry, Melissa J.; Belpoggi, Fiorella; Landrigan, Philip J.; Perro, Michelle; Mandrioli, Daniele; Antoniou, Michael N.; Winchester, Paul; Mesnage, Robin; Pediatrics, School of MedicineBackground: Flaws in the science supporting pesticide risk assessment and regulation stand in the way of progress in mitigating the human health impacts of pesticides. Critical problems include the scope of regulatory testing protocols, the near-total focus on pure active ingredients rather than formulated products, lack of publicly accessible information on co-formulants, excessive reliance on industry-supported studies coupled with reticence to incorporate published results in the risk assessment process, and failure to take advantage of new scientific opportunities and advances, e.g. biomonitoring and "omics" technologies. Recommended actions: Problems in pesticide risk assessment are identified and linked to study design, data, and methodological shortcomings. Steps and strategies are presented that have potential to deepen scientific knowledge of pesticide toxicity, exposures, and risks. We propose four solutions: (1) End near-sole reliance in regulatory decision-making on industry-supported studies by supporting and relying more heavily on independent science, especially for core toxicology studies. The cost of conducting core toxicology studies at labs not affiliated with or funded directly by pesticide registrants should be covered via fees paid by manufacturers to public agencies. (2) Regulators should place more weight on mechanistic data and low-dose studies within the range of contemporary exposures. (3) Regulators, public health agencies, and funders should increase the share of exposure-assessment resources that produce direct measures of concentrations in bodily fluids and tissues. Human biomonitoring is vital in order to quickly identify rising exposures among vulnerable populations including applicators, pregnant women, and children. (4) Scientific tools across disciplines can accelerate progress in risk assessments if integrated more effectively. New genetic and metabolomic markers of adverse health impacts and heritable epigenetic impacts are emerging and should be included more routinely in risk assessment to effectively prevent disease. Conclusions: Preventing adverse public health outcomes triggered or made worse by exposure to pesticides will require changes in policy and risk assessment procedures, more science free of industry influence, and innovative strategies that blend traditional methods with new tools and mechanistic insights.Item Environmental Microplastic and Nanoplastic: Exposure Routes and Effects on Coagulation and the Cardiovascular System(Elsevier, 2021) Lett, Zachary; Hall, Abigail; Skidmore, Shelby; Alves, Nathan J.; Emergency Medicine, School of MedicinePlastic pollution has been a growing concern in recent decades due to the proliferation and ease of manufacturing of single use plastic products and inadequate waste and recycling management. Microplastic, and even smaller nanoplastic, particles are persistent pollutants in aquatic and terrestrial systems and are the subject of active and urgent research. This review will explore the current research on how exposure to plastic particles occurs and the risks associated from different exposure routes: ingestion, inhalation, and dermal exposure. The effects of microplastics on the cardiovascular system are of particular importance due to its sensitivity and ability to transport particles to other organ systems. The effects of microplastics and nanoplastics on the heart, platelet aggregation, and thrombus formation will all be explored with focus on how the particle characteristics modulate their effect. Plastic particle interactions are highly dependent on both their size and their surface chemistry and interesting research is being done with the interaction of particle characteristics and effect on thrombosis and the cardiovascular system. There is significant uncertainty surrounding some of the findings in this field as research in this area is still maturing. There are undoubtedly more physiological consequences than we are currently aware of resulting from environmental plastic exposure and more studies need to be conducted to reveal the full extent of pathologies caused by the various routes of microplastic exposure, with particular emphasis on longitudinal exposure effects. Further research will allow us to recognize the full extent of physiological impact and begin developing viable solutions to reduce plastic pollution and potentially design interventions to mitigate in-vivo plastic effects following significant or prolonged exposure.Item Long-term air pollution and blood pressure in an African-American cohort: the Jackson Heart Study(Elsevier, 2021) Weaver, Anne M.; Wang, Yi; Wellenius, Gregory A.; Bidulescu, Aurelian; Sims, Mario; Vaidyanathan, Ambarish; Hickson, DeMarc A.; Shimbo, Daichi; Abdalla, Marwah; Diaz, Keith M.; Seals, Samantha R.; Epidemiology, Richard M. Fairbanks School of Public HealthIntroduction: African Americans are disproportionately affected by high blood pressure, which may be associated with exposure to air pollutants, such as fine particulate matter and ozone. Methods: Among African American Jackson Heart Study participants, this study examined associations between 1-year and 3-year mean fine particulate matter and ozone concentrations with prevalent and incident hypertension at Visits 1 (2000-2004, n=5,191) and 2 (2005-2008, n=4,105) using log binomial regression. Investigators examined associations with systolic blood pressure, diastolic blood pressure, pulse pressure, and mean arterial pressure using linear regression and hierarchical linear models, adjusting for sociodemographic, behavioral, and clinical characteristics. Analyses were conducted in 2017-2019. Results: No associations were observed between fine particulate matter or ozone concentration and prevalent or incident hypertension. In linear models, an IQR increase in 1-year ozone concentration was associated with 0.67 mmHg higher systolic blood pressure (95% CI=0.27, 1.06), 0.42 mmHg higher diastolic blood pressure (95% CI=0.20, 0.63), and 0.50 mmHg higher mean arterial pressure (95% CI=0.26, 0.74). In hierarchical models, fine particulate matter was inversely associated with systolic blood pressure (-0.72, 95% CI= -1.31, -0.13), diastolic blood pressure (-0.69, 95% CI= -1.02, -0.36), and mean arterial pressure (-0.71, 95% CI= -1.08, -0.33). Attenuated associations were observed with 1-year concentrations and at Visit 1. Conclusions: Positive associations were observed between ozone and systolic blood pressure, diastolic blood pressure, and mean arterial pressure, and inverse associations between fine particulate matter and systolic blood pressure, diastolic blood pressure, and mean arterial pressure in an African American population with high (56%) prevalence of hypertension. Effect sizes were small and may not be clinically relevant.Item Microbial rRNA sequencing analysis of evaporative cooler indoor environments located in the Great Basin Desert region of the United States(Royal Society of Chemistry, 2017-02-22) Lemons, Angela R.; Hogan, Mary Beth; Gault, Ruth A.; Holland, Kathleen; Sobek, Edward; Olsen-Wilson, Kimberly A.; Park, Yeonmi; Park, Ju-Hyeong; Gu, Ja Kook; Kashon, Michael L.; Green, Brett J.; Pediatrics, School of MedicineRecent studies conducted in the Great Basin Desert region of the United States have shown that skin test reactivity to fungal and dust mite allergens are increased in children with asthma or allergy living in homes with evaporative coolers (EC). The objective of this study was to determine if the increased humidity previously reported in EC homes leads to varying microbial populations compared to homes with air conditioners (AC). Children with physician-diagnosed allergic rhinitis living in EC or AC environments were recruited into the study. Air samples were collected from the child's bedroom for genomic DNA extraction and metagenomic analysis of bacteria and fungi using the Illumina MiSeq sequencing platform. The analysis of bacterial populations revealed no major differences between EC and AC sampling environments. The fungal populations observed in EC homes differed from AC homes. The most prevalent species discovered in AC environments belonged to the genera Cryptococcus (20%) and Aspergillus (20%). In contrast, the most common fungi identified in EC homes belonged to the order Pleosporales and included Alternaria alternata (32%) and Phoma spp. (22%). The variations in fungal populations provide preliminary evidence of the microbial burden children may be exposed to within EC environments in this region.