- Browse by Subject
Browsing by Subject "Entropy"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Addressing Intersite Coupling Unlocks Large Combinatorial Chemical Spaces for Alchemical Free Energy Methods(American Chemical Society, 2022) Hayes, Ryan L.; Vilseck, Jonah Z.; Brooks, Charles L., III.; Biochemistry and Molecular Biology, School of MedicineAlchemical free energy methods are playing a growing role in molecular design, both for computer-aided drug design of small molecules and for computational protein design. Multisite λ dynamics (MSλD) is a uniquely scalable alchemical free energy method that enables more efficient exploration of combinatorial alchemical spaces encountered in molecular design, but simulations have typically been limited to a few hundred ligands or sequences. Here, we focus on coupling between sites to enable scaling to larger alchemical spaces. We first discuss updates to the biasing potentials that facilitate MSλD sampling to include coupling terms and show that this can provide more thorough sampling of alchemical states. We then harness coupling between sites by developing a new free energy estimator based on the Potts models underlying direct coupling analysis, a method for predicting contacts from sequence coevolution, and find it yields more accurate free energies than previous estimators. The sampling requirements of the Potts model estimator scale with the square of the number of sites, a substantial improvement over the exponential scaling of the standard estimator. This opens up exploration of much larger alchemical spaces with MSλD for molecular design.Item Entropy, Fluctuations, and Disordered Proteins(MDPI, 2019-08) Faraggi, Eshel; Dunker, A. Keith; Jernigan, Robert L.; Kloczkowski, Andrzej; Physics, School of ScienceEntropy should directly reflect the extent of disorder in proteins. By clustering structurally related proteins and studying the multiple-sequence-alignment of the sequences of these clusters, we were able to link between sequence, structure, and disorder information. We introduced several parameters as measures of fluctuations at a given MSA site and used these as representative of the sequence and structure entropy at that site. In general, we found a tendency for negative correlations between disorder and structure, and significant positive correlations between disorder and the fluctuations in the system. We also found evidence for residue-type conservation for those residues proximate to potentially disordered sites. Mutation at the disorder site itself appear to be allowed. In addition, we found positive correlation for disorder and accessible surface area, validating that disordered residues occur in exposed regions of proteins. Finally, we also found that fluctuations in the dihedral angles at the original mutated residue and disorder are positively correlated while dihedral angle fluctuations in spatially proximal residues are negatively correlated with disorder. Our results seem to indicate permissible variability in the disordered site, but greater rigidity in the parts of the protein with which the disordered site interacts. This is another indication that disordered residues are involved in protein function.Item Mg2+ Effect on Argonaute and RNA Duplex by Molecular Dynamics and Bioinformatics Implications(PLOS (Public Library of Science), 2014-10-17) Nam, Seungyoon; Ryu, Hyojung; Son, Won-joon; Kim, Yon Hui; Kim, Kyung Tae; Balch, Curt; Nephew, Kenneth P.; Lee, Jinhyuk; Medical Sciences Program at Indiana University BloomingtonRNA interference (RNAi), mediated by small non-coding RNAs (e.g., miRNAs, siRNAs), influences diverse cellular functions. Highly complementary miRNA-target RNA (or siRNA-target RNA) duplexes are recognized by an Argonaute family protein (Ago2), and recent observations indicate that the concentration of Mg2+ ions influences miRNA targeting of specific mRNAs, thereby modulating miRNA-mRNA networks. In the present report, we studied the thermodynamic effects of differential [Mg2+] on slicing (RNA silencing cycle) through molecular dynamics simulation analysis, and its subsequent statistical analysis. Those analyses revealed different structural conformations of the RNA duplex in Ago2, depending on Mg2+ concentration. We also demonstrate that cation effects on Ago2 structural flexibility are critical to its catalytic/functional activity, with low [Mg2+] favoring greater Ago2 flexibility (e.g., greater entropy) and less miRNA/mRNA duplex stability, thus favoring slicing. The latter finding was supported by a negative correlation between expression of an Mg2+ influx channel, TRPM7, and one miRNA’s (miR-378) ability to downregulate its mRNA target, TMEM245. These results imply that thermodynamics could be applied to siRNA-based therapeutic strategies, using highly complementary binding targets, because Ago2 is also involved in RNAi slicing by exogenous siRNAs. However, the efficacy of a siRNA-based approach will differ, to some extent, based on the Mg2+ concentration even within the same disease type; therefore, different siRNA-based approaches might be considered for patient-to-patient needs.Item Optimizing Multisite λ-Dynamics Throughput with Charge Renormalization(American Chemical Society, 2022) Vilseck, Jonah Z.; Cervantes, Luis F.; Hayes, Ryan L.; Brooks, Charles L., III.; Biochemistry and Molecular Biology, School of MedicineWith the ability to sample combinations of alchemical perturbations at multiple sites off a small molecule core, multisite λ-dynamics (MSλD) has become an attractive alternative to conventional alchemical free energy methods for exploring large combinatorial chemical spaces. However, current software implementations dictate that combinatorial sampling with MSλD must be performed with a multiple topology model (MTM), which is nontrivial to create by hand, especially for a series of ligand analogues which may have diverse functional groups attached. This work introduces an automated workflow, referred to as msld_py_prep, to assist in the creation of a MTM for use with MSλD. One approach for partitioning partial atomic charges between ligands to create a MTM, called charge renormalization, is also presented and rigorously evaluated. We find that msld_py_prep greatly accelerates the preparation of MSλD ready-to-use files and that charge renormalization can provide a successful approach for MTM generation, as long as bookending calculations are applied to correct small differences introduced by charge renormalization. Charge renormalization also facilitates the use of many different force field parameters with MSλD, broadening the applicability of MSλD for computer-aided drug design.Item Prognostic Value of Phase Analysis for Predicting Adverse Cardiac Events beyond Conventional SPECT Variables: Results from the REFINE SPECT Registry(American Heart Association, 2021) Kuronuma, Keiichiro; Miller, Robert J. H.; Otaki, Yuka; Van Kriekinge, Serge D.; Diniz, Marcio A.; Sharir, Tali; Hu, Lien-Hsin; Gransar, Heidi; Liang, Joanna X.; Parekh, Tejas; Kavanagh, Paul; Einstein, Andrew J.; Fish, Mathews B.; Ruddy, Terrence D.; Kaufmann, Philipp A.; Sinusas, Albert J.; Miller, Edward J.; Bateman, Timothy M.; Dorbala, Sharmila; Di Carli, Marcelo; Tamarappoo, Balaji K.; Dey, Damini; Berman, Daniel S.; Slomka, Piotr J.; Radiation Oncology, School of MedicineBackground: Phase analysis of single-photon emission computed tomography myocardial perfusion imaging provides dyssynchrony information which correlates well with assessments by echocardiography, but the independent prognostic significance is not well defined. This study assessed the independent prognostic value of single-photon emission computed tomography-myocardial perfusion imaging phase analysis in the largest multinational registry to date across all modalities. Methods: From the REFINE SPECT (Registry of Fast Myocardial Perfusion Imaging With Next Generation SPECT), a total of 19 210 patients were included (mean age 63.8±12.0 years and 56% males). Poststress total perfusion deficit, left ventricular ejection fraction, and phase variables (phase entropy, bandwidth, and SD) were obtained automatically. Cox proportional hazards analyses were performed to assess associations with major adverse cardiac events (MACE). Results: During a follow-up of 4.5±1.7 years, 2673 (13.9%) patients experienced MACE. Annualized MACE rates increased with phase variables and were ≈4-fold higher between the second and highest decile group for entropy (1.7% versus 6.7%). Optimal phase variable cutoff values stratified MACE risk in patients with normal and abnormal total perfusion deficit and left ventricular ejection fraction. Only entropy was independently associated with MACE. The addition of phase entropy significantly improved the discriminatory power for MACE prediction when added to the model with total perfusion deficit and left ventricular ejection fraction (P<0.0001). Conclusions: In a largest to date imaging study, widely representative, international cohort, phase variables were independently associated with MACE and improved risk stratification for MACE beyond the prediction by perfusion and left ventricular ejection fraction assessment alone. Phase analysis can be obtained fully automatically, without additional radiation exposure or cost to improve MACE risk prediction and, therefore, should be routinely reported for single-photon emission computed tomography-myocardial perfusion imaging studies.