- Browse by Subject
Browsing by Subject "Engineering faculty"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Faculty and Student Perceptions of Project-Enhanced Learning in Early Engineering Education: Barriers, Benefits, and Breakthroughs(2012) Nalim, M. Razi; Rajagopal, Manikanda K.; Helfenbein, Robert J.The application of problem-based learning (PBL) to undergraduate engineering education has emerged as an area of research interest over the past few decades. A related form of active learning is project-enhanced learning (PEL), intended to support integrative thinking and student motivation. PEL is specifically designed as a supplement to, but not a replacement for, traditional teaching methods in early engineering science courses. Data regarding perceived benefits and barriers to PEL as an intervention for improved student learning were collected from instructors engaged in PEL, and were examined using extended-term mixed-method research design (ETMM). ETMM enables researchers to remain attentive to contextual factors shaping program implementation and to changes in implementation over time. The case study included interviews with faculty, and survey instruments as part of the multiple data-point strategy. Among the findings, instructors adding PEL to their instructional strategies expressed satisfaction with improved student motivation, interaction, and socialization, which may help with student success and retention in engineering. Some instructors expressed concern about losing focus on the challenging analytical course topics, but those who attempted PEL were able to achieve appropriate balance by designing project tasks to align well with the topics and by limiting non-aligned project activity. In some cases, instructors who initially resisted adopting PEL changed to a favorable disposition after interacting with students and faculty who were favorable. However, a small number of instructors responded to the survey with a strong negative view of PEL.Item Project enhanced learning in challenging engineering courses(2012) Nalim, M. Razi; Li, Lingxi; Orono, Peter; Helfenbein, Robert; Yu, Whitney; Mital, ManuMany sophomores and juniors perform poorly in traditional lecture presentation of challenging engineering science courses, and this may present either a threat or opportunity for retention. Examples of such core ‘gateway’ courses in mechanical engineering and electrical engineering curricula include Thermodynamics, Signals and Systems, Probabilistic Methods, Statics, and Dynamics, among others. Test scores, surveys, and classroom assessments indicate that many students completing these courses did not really understand the fundamentals, even if they could apply the 'formulae’. A supplemental or alternative approach such as project-enhanced learning has been effective. The authors have implemented project experiences in three different courses, based on initial experience in a course on Thermodynamics. In Fall 2011, project-enhanced learning was introduced in two other courses: Probabilistic Methods In Electrical And Computer Engineering, and Dynamics in mechanical engineering. One or two major projects based on systems, objects, or activities that are familiar to the students are designed and assigned to apply key course topics. The goals are to motivate and improve learning of abstract concepts and to provide a realistic application that anchors and helps retain learning. Teamwork and professionalism were also emphasized. This paper will present the projects developed and the experience of the instructors in conducting the projects. Observed student reactions and learning will be discussed. Online discussion forums helped in project guidance and peer discussions. Each student team was required to submit a final project report at the end of the semester.