- Browse by Subject
Browsing by Subject "Endotoxic shock"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Intravascular heavy chain-modification of hyaluronan during endotoxic shock(Elsevier, 2018-12-26) Ni, Kevin; Gill, Amar; Cao, Danting; Koike, Kengo; Schweitzer, Kelly S.; Garantziotis, Stavros; Petrache, Irina; Biochemistry and Molecular Biology, School of MedicineDuring inflammation, the covalent linking of the ubiquitous extracellular polysaccharide hyaluronan (HA) with the heavy chains (HC) of the serum protein inter alpha inhibitor (IαI) is exclusively mediated by the enzyme tumor necrosis factor α (TNFα)-stimulated-gene-6 (TSG-6). While significant advances have been made regarding how HC-modified HA (HC-HA) is an important regulator of inflammation, it remains unclear why HC-HA plays a critical role in promoting survival in intraperitoneal lipopolysaccharide (LPS)-induced endotoxemia while exerting only a modest role in the outcomes following intratracheal exposure to LPS. To address this gap, the two models of intraperitoneal LPS-induced endotoxic shock and intratracheal LPS-induced acute lung injury were directly compared in TSG-6 knockout mice and littermate controls. HC-HA formation, endogenous TSG-6 activity, and inflammatory markers were assessed in plasma and lung tissue. TSG-6 knockout mice exhibited accelerated mortality during endotoxic shock. While both intraperitoneal and intratracheal LPS induced HC-HA formation in lung parenchyma, only systemically-induced endotoxemia increased plasma TSG-6 levels and intravascular HC-HA formation. Cultured human lung microvascular endothelial cells secreted TSG-6 in response to both TNFα and IL1β stimulation, indicating that, in addition to inflammatory cells, the endothelium may secrete TSG-6 into circulation during systemic inflammation. These data show for the first time that LPS-induced systemic inflammation is uniquely characterized by significant vascular induction of TSG-6 and HC-HA, which may contribute to improved outcomes of endotoxemia.Item Role of Covalent Modification of Hyaluronan with Inter-Alpha Inhibitor Heavy Chains During Acute Lung Injury(2019-04) Ni, Kevin Chen; Petrache, Irina; Evans-Molina, Carmella; Dong, X. Charlie; Goebl, Mark G.; Wek, Ronald C.The extracellular matrix (ECM) provides a structural and signaling platform for cells that comprise various organs, playing a critical role in tissue maintenance, injury, and repair. Hyaluronan (also known as hyaluronic acid, HA) is a ubiquitous ECM polysaccharide consisting of a repeating disaccharide backbone that can be covalently modified by the heavy chains (HC) of the serum protein inter-alpha-inhibitor (IαI) during inflammation. Known as the only covalent modification of HA, the HC linking of HA is exclusively mediated by the inflammation-induced secreted enzyme TNFα-stimulated gene-6 (TSG-6). Mice deficient for HC-HA formation, due to the lack of either TSG-6 or IαI, display reduced survival during systemic lipopolysaccharide (LPS)-induced endotoxic shock and its associated acute lung injury. We therefore hypothesized that HC-HA should play an important protective role against acute lung injury induced by intratracheal LPS or Pseudomonas aeruginosa (PA) gram-negative bacteria. We also identified that lung instillation of LPS or PA caused rapid induction of lung parenchymal HC-HA that was largely cleared during resolution of injury, indicative of a high rate of HA turnover and remodeling during reversible lung injury. However, using TSG-6 knockout mice, we determined that HC-HA exerted minimal protective effects against intratracheal LPS or PA-induced acute lung injury. To better address the differential roles of HC-HA during systemic versus localized intratracheal exposure to LPS, we characterized and compared the induction of HC-HA in plasma and lung in these two models. While lung parenchymal HC-HA formed in both injury models, intravascular HC-HA and TSG-6 were exclusively induced during systemic LPS exposure and were associated with improved outcomes, including decreased number of circulating neutrophils and plasma TNFα levels. Our results suggest that LPS induces HC-HA formation in various tissues depending on the route of exposure and that the specific intravascular induction of HCHA during systemic LPS exposure may have a protective role during endotoxic shock.