- Browse by Subject
Browsing by Subject "Endoplasmic Reticulum"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Palmitate induces mRNA translation and increases ER protein load in islet β-cells via activation of the mammalian target of rapamycin pathway(American Diabetes Association, 2014-10) Hatanaka, Masayuki; Maier, Bernhard; Sims, Emily K.; Templin, Andrew T.; Kulkarni, Rohit N.; Evans-Molina, Carmella; Mirmira, Raghavendra G.; Department of Medicine, IU School of MedicineSaturated free fatty acids (FFAs) have complex effects on the islet β-cell, acutely promoting adaptive hyperplasia but chronically impairing insulin release. The acute effects of FFAs remain incompletely defined. To elucidate these early molecular events, we incubated mouse β-cells and islets with palmitate and then studied mRNA translation by polyribosomal profiling and analyzed signaling pathways by immunoblot analysis. We found that palmitate acutely increases polyribosome occupancy of total RNA, consistent with an increase in mRNA translation. This effect on translation was attributable to activation of mammalian target of rapamycin (mTOR) pathways via L-type Ca(2+) channels but was independent of insulin signaling. Longer incubations led to depletion of polyribosome-associated RNA, consistent with activation of the unfolded protein response (UPR). Pharmacologic inhibition of mTOR suppressed both the acute effects of palmitate on mRNA translation and the chronic effects on the UPR. Islets from mice fed a high-fat diet for 7 days showed increases in polyribosome-associated RNA and phosphorylation of S6K, both consistent with activation of mTOR. Our results suggest that palmitate acutely activates mRNA translation and that this increase in protein load contributes to the later UPR.Item Pancreatic and duodenal homeobox protein 1 (Pdx-1) maintains endoplasmic reticulum calcium levels through transcriptional regulation of sarco-endoplasmic reticulum calcium ATPase 2b (SERCA2b) in the islet β cell(American Society for Biochemistry and Molecular Biology, 2014-11-21) Johnson, Justin S.; Kono, Tatsuyoshi; Tong, Xin; Yamamoto, Wataru R.; Zarain-Herzberg, Angel; Merrins, Matthew J.; Satin, Leslie S.; Gilon, Patrick; Evans-Molina, Carmella; Department of Medicine, IU School of MedicineAlthough the pancreatic duodenal homeobox 1 (Pdx-1) transcription factor is known to play an indispensable role in β cell development and secretory function, recent data also implicate Pdx-1 in the maintenance of endoplasmic reticulum (ER) health. The sarco-endoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) gradient between the cytosol and ER lumen. In models of diabetes, our data demonstrated loss of β cell Pdx-1 that occurs in parallel with altered SERCA2b expression, whereas in silico analysis of the SERCA2b promoter revealed multiple putative Pdx-1 binding sites. We hypothesized that Pdx-1 loss under inflammatory and diabetic conditions leads to decreased SERCA2b levels and activity with concomitant alterations in ER health. To test this, siRNA-mediated knockdown of Pdx-1 was performed in INS-1 cells. The results revealed reduced SERCA2b expression and decreased ER Ca(2+), which was measured using fluorescence lifetime imaging microscopy. Cotransfection of human Pdx-1 with a reporter fused to the human SERCA2 promoter increased luciferase activity 3- to 4-fold relative to an empty vector control, and direct binding of Pdx-1 to the proximal SERCA2 promoter was confirmed by chromatin immunoprecipitation. To determine whether restoration of SERCA2b could rescue ER stress induced by Pdx-1 loss, Pdx1(+/-) mice were fed a high-fat diet. Isolated islets demonstrated an increased spliced-to-total Xbp1 ratio, whereas SERCA2b overexpression reduced the Xbp1 ratio to that of wild-type controls. Together, these results identify SERCA2b as a novel transcriptional target of Pdx-1 and define a role for altered ER Ca(2+) regulation in Pdx-1-deficient states.Item Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice(Elsevier, 2015-04) Sato, Amy Y.; Tu, Xiaolin; McAndrews, Kevin A.; Plotkin, Lilian I.; Bellido, Teresita; Department of Anatomy & Cell Biology, IU School of MedicineEndoplasmic reticulum (ER) stress is associated with increased reactive oxygen species (ROS), results from accumulation of misfolded/unfolded proteins, and can trigger apoptosis. ER stress is alleviated by phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which inhibits protein translation allowing the ER to recover, thus promoting cell viability. We investigated whether osteoblastic cell apoptosis induced by glucocorticoids (GCs) is due to induction of ROS/ER stress and whether inhibition of eIF2α dephosphorylation promotes survival opposing the deleterious effects of GC in vitro and in vivo. Apoptosis of osteocytic MLO-Y4 and osteoblastic OB-6 cells induced by dexamethasone was abolished by ROS inhibitors. Like GC, the ER stress inducing agents brefeldin A and tunicamycin induced osteoblastic cell apoptosis. Salubrinal or guanabenz, specific inhibitors of eIF2α dephosphorylation, blocked apoptosis induced by either GC or ER stress inducers. Moreover, GC markedly decreased mineralization in OB-6 cells or primary osteoblasts; and salubrinal or guanabenz increased mineralization and prevented the inhibitory effect of GC. Furthermore, salubrinal (1 mg/kg/day) abolished osteoblast and osteocyte apoptosis in cancellous and cortical bone and partially prevented the loss of BMD at all sites and the decreased vertebral cancellous bone formation induced by treatment with prednisolone for 28 days (1.4 mg/kg/day). We conclude that part of the pro-apoptotic actions of GC on osteoblastic cells is mediated through ER stress, and that inhibition of eIF2α dephosphorylation protects from GC-induced apoptosis of osteoblasts and osteocytes in vitro and in vivo and from the deleterious effects of GC on the skeleton.