- Browse by Subject
Browsing by Subject "Empirical Bayes"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Estimation of treatment effect in a subpopulation: An empirical Bayes approach(Taylor & Francis, 2016) Shen, Changyu; Li, Xiaochun; Jong, Jaesik; Department of Biostatistics, Richard M. Fairbanks School of Public HealthIt is well recognized that the benefit of a medical intervention may not be distributed evenly in the target population due to patient heterogeneity, and conclusions based on conventional randomized clinical trials may not apply to every person. Given the increasing cost of randomized trials and difficulties in recruiting patients, there is a strong need to develop analytical approaches to estimate treatment effect in subpopulations. In particular, due to limited sample size for subpopulations and the need for multiple comparisons, standard analysis tends to yield wide confidence intervals of the treatment effect that are often noninformative. We propose an empirical Bayes approach to combine both information embedded in a target subpopulation and information from other subjects to construct confidence intervals of the treatment effect. The method is appealing in its simplicity and tangibility in characterizing the uncertainty about the true treatment effect. Simulation studies and a real data analysis are presented.Item Study designs and statistical methods for pharmacogenomics and drug interaction studies(2016-04-01) Zhang, Pengyue; Li, Lang; Boukai, Benzion; Shen, Changyu; Zeng, Donglin; Liu, YunlongAdverse drug events (ADEs) are injuries resulting from drug-related medical interventions. ADEs can be either induced by a single drug or a drug-drug interaction (DDI). In order to prevent unnecessary ADEs, many regulatory agencies in public health maintain pharmacovigilance databases for detecting novel drug-ADE associations. However, pharmacovigilance databases usually contain a significant portion of false associations due to their nature structure (i.e. false drug-ADE associations caused by co-medications). Besides pharmacovigilance studies, the risks of ADEs can be minimized by understating their mechanisms, which include abnormal pharmacokinetics/pharmacodynamics due to genetic factors and synergistic effects between drugs. During the past decade, pharmacogenomics studies have successfully identified several predictive markers to reduce ADE risks. While, pharmacogenomics studies are usually limited by the sample size and budget. In this dissertation, we develop statistical methods for pharmacovigilance and pharmacogenomics studies. Firstly, we propose an empirical Bayes mixture model to identify significant drug-ADE associations. The proposed approach can be used for both signal generation and ranking. Following this approach, the portion of false associations from the detected signals can be well controlled. Secondly, we propose a mixture dose response model to investigate the functional relationship between increased dimensionality of drug combinations and the ADE risks. Moreover, this approach can be used to identify high-dimensional drug combinations that are associated with escalated ADE risks at a significantly low local false discovery rates. Finally, we proposed a cost-efficient design for pharmacogenomics studies. In order to pursue a further cost-efficiency, the proposed design involves both DNA pooling and two-stage design approach. Compared to traditional design, the cost under the proposed design will be reduced dramatically with an acceptable compromise on statistical power. The proposed methods are examined by extensive simulation studies. Furthermore, the proposed methods to analyze pharmacovigilance databases are applied to the FDA’s Adverse Reporting System database and a local electronic medical record (EMR) database. For different scenarios of pharmacogenomics study, optimized designs to detect a functioning rare allele are given as well.