- Browse by Subject
Browsing by Subject "Embryonic lethality"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Genetic resiliency associated with dominant lethal TPM1 mutation causing atrial septal defect with high heritability(Elsevier, 2022-02-15) Teekakirikul, Polakit; Zhu, Wenjuan; Xu, Xinxiu; Young, Cullen B.; Tan, Tuantuan; Smith, Amanda M.; Wang, Chengdong; Peterson, Kevin A.; Gabriel, George C.; Ho, Sebastian; Sheng, Yi; de Bellaing, Anne Moreau; Sonnenberg, Daniel A.; Lin, Jiuann-huey; Fotiou, Elisavet; Tenin, Gennadiy; Wang, Michael X.; Wu, Yijen L.; Feinstein, Timothy; Devine, William; Gou, Honglan; Bais, Abha S.; Glennon, Benjamin J.; Zahid, Maliha; Wong, Timothy C.; Ahmad, Ferhaan; Rynkiewicz, Michael J.; Lehman, William J.; Keavney, Bernard; Alastalo, Tero-Pekka; Freckmann, Mary-Louise; Orwig, Kyle; Murray, Steve; Ware, Stephanie M.; Zhao, Hui; Feingold, Brian; Lo, Cecilia W.; Pediatrics, School of MedicineAnalysis of large-scale human genomic data has yielded unexplained mutations known to cause severe disease in healthy individuals. Here, we report the unexpected recovery of a rare dominant lethal mutation in TPM1, a sarcomeric actin-binding protein, in eight individuals with large atrial septal defect (ASD) in a five-generation pedigree. Mice with Tpm1 mutation exhibit early embryonic lethality with disrupted myofibril assembly and no heartbeat. However, patient-induced pluripotent-stem-cell-derived cardiomyocytes show normal beating with mild myofilament defect, indicating disease suppression. A variant in TLN2, another myofilament actin-binding protein, is identified as a candidate suppressor. Mouse CRISPR knock-in (KI) of both the TLN2 and TPM1 variants rescues heart beating, with near-term fetuses exhibiting large ASD. Thus, the role of TPM1 in ASD pathogenesis unfolds with suppression of its embryonic lethality by protective TLN2 variant. These findings provide evidence that genetic resiliency can arise with genetic suppression of a deleterious mutation.Item Naa12 compensates for Naa10 in mice in the amino-terminal acetylation pathway(eLife Sciences Publications, 2021-08-06) Kweon, Hyae Yon; Lee, Mi-Ni; Dorfel, Max; Seo, Seungwoon; Gottlieb, Leah; PaPazyan, Thomas; McTiernan, Nina; Ree, Rasmus; Bolton, David; Garcia, Andrew; Flory, Michael; Crain, Jonathan; Sebold, Alison; Lyons, Scott; Ismail, Ahmed; Marchi, Elaine; Sonn, Seong-keun; Jeong, Se-Jin; Jeon, Sejin; Ju, Shinyeong; Conway, Simon J.; Kim, Taesoo; Kim, Hyun-Seok; Lee, Cheolju; Roh, Tae-Young; Arnesen, Thomas; Marmorstein, Ronen; Oh, Goo Taeg; Lyon, Gholson J.; Pediatrics, School of MedicineAmino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.