- Browse by Subject
Browsing by Subject "Electrophoresis"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Evaluation of Storage Conditions for Assessing DNA Damage Using the Comet Assay(2006-11-02T14:25:05Z) Villavicencio, Dante; Klaunig, James E.; Kamendulis, Lisa M.; Willis, Lynn R.The single cell gel electrophoresis assay (comet assay) is a useful tool for monitoring individuals who may be at risk of DNA damage and the ensuing process of carcinogenesis or other disease states. Leukocytes in blood samples provide a means of obtaining cells for use in the comet assay. However instances may arise when samples must be stored for later analysis. The present study investigated the effects of storage conditions on DNA damage in the form of strand breaks and oxidized bases in rat and human leukocytes using the comet assay. Whole blood and buffy coat samples were stored at room temperature or 4ºC for 1, 2, 24, and 48 hours or cryopreserved at -80ºC for 1 day and 1, 2, 3, and 4 weeks. The results show that the time of storage is limited if the whole blood or buffy coat samples are stored at room temperature or 4ºC. However, if cryopreserved using glycerol or DMSO as the cryoprotectant, the samples may be stored for at least 4 weeks without DNA strand breaks or oxidative damage deviating significantly from the fresh samples.Item Human α-amylase: genetic, biochemical and clinical heterogeneity(1976) Rosenblum, Barnett BenItem Modeling the gene delivery process of the needle array-based tissue nanotransfection(Springer, 2022) Li, Zhigang; Xuan, Yi; Ghatak, Subhadip; Guda, Poornachander R.; Roy, Sashwati; Sen, Chandan K.; Surgery, School of MedicineHollow needle array-based tissue nanotransfection (TNT) presents an in vivo transfection approach that directly translocate exogeneous genes to target tissues by using electric pulses. In this work, the gene delivery process of TNT was simulated and experimentally validated. We adopted the asymptotic method and cell-array-based model to investigate the electroporation behaviors of cells within the skin structure. The distribution of nonuniform electric field across the skin results in various electroporation behavior for each cell. Cells underneath the hollow microchannels of the needle exhibited the highest total pore numbers compared to others due to the stronger localized electric field. The percentage of electroporated cells within the skin structure, with pore radius over 10 nm, increases from 25% to 82% as the applied voltage increases from 100 to 150 V/mm. Furthermore, the gene delivery behavior across the skin tissue was investigated through the multilayer-stack-based model. The delivery distance increased nonlinearly as the applied voltage and pulse number increased, which mainly depends on the diffusion characteristics and electric conductivity of each layer. It was also found that the skin is required to be exfoliated prior to the TNT procedure to enhance the delivery depth. This work provides the foundation for transition from the study of murine skin to translation use in large animals and human settings.