- Browse by Subject
Browsing by Subject "Electronic laboratory reporting"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Completeness and timeliness of notifiable disease reporting: a comparison of laboratory and provider reports submitted to a large county health department(Springer Nature, 2017-06-23) Dixon, Brian E.; Zhang, Zuoyi; Lai, Patrick T. S.; Kirbiyik, Uzay; Williams, Jennifer; Hills, Rebecca; Revere, Debra; Gibson, P. Joseph; Grannis, Shaun J.; BioHealth Informatics, School of Informatics and ComputingBACKGROUND: Most public health agencies expect reporting of diseases to be initiated by hospital, laboratory or clinic staff even though so-called passive approaches are known to be burdensome for reporters and produce incomplete as well as delayed reports, which can hinder assessment of disease and delay recognition of outbreaks. In this study, we analyze patterns of reporting as well as data completeness and timeliness for traditional, passive reporting of notifiable disease by two distinct sources of information: hospital and clinic staff versus clinical laboratory staff. Reports were submitted via fax machine as well as electronic health information exchange interfaces. METHODS: Data were extracted from all submitted notifiable disease reports for seven representative diseases. Reporting rates are the proportion of known cases having a corresponding case report from a provider, a faxed laboratory report or an electronic laboratory report. Reporting rates were stratified by disease and compared using McNemar's test. For key data fields on the reports, completeness was calculated as the proportion of non-blank fields. Timeliness was measured as the difference between date of laboratory confirmed diagnosis and the date the report was received by the health department. Differences in completeness and timeliness by data source were evaluated using a generalized linear model with Pearson's goodness of fit statistic. RESULTS: We assessed 13,269 reports representing 9034 unique cases. Reporting rates varied by disease with overall rates of 19.1% for providers and 84.4% for laboratories (p < 0.001). All but three of 15 data fields in provider reports were more often complete than those fields within laboratory reports (p <0.001). Laboratory reports, whether faxed or electronically sent, were received, on average, 2.2 days after diagnosis versus a week for provider reports (p <0.001). CONCLUSIONS: Despite growth in the use of electronic methods to enhance notifiable disease reporting, there still exists much room for improvement.Item Towards Interoperability for Public Health Surveillance: Experiences from Two States(JMIR, 2013-04-04) Dixon, Brian E.; Siegel, Jason A.; Oemig, Tanya V.; Grannis, Shaun J.; Health Policy and Management, Richard M. Fairbanks School of Public HealthObjective: To characterize the use of standardized vocabularies in real-world electronic laboratory reporting (ELR) messages sent to public health agencies for surveillance. Introduction: The use of health information systems to electronically deliver clinical data necessary for notifiable disease surveillance is growing. For health information systems to be effective at improving population surveillance functions, semantic interoperability is necessary. Semantic interoperability is “the ability to import utterances from another computer without prior negotiation” (1). Semantic interoperability is achieved through the use of standardized vocabularies which define orthogonal concepts to represent the utterances emitted by information systems. There are standard, mature, and internationally recognized vocabularies for describing tests and results for notifiable disease reporting through ELR (2). Logical Observation Identifiers Names and Codes (LOINC) identify the specific lab test performed. Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) identify the diseases and organisms tested for in a lab test. Many commercial laboratory and hospital information systems claim to support LOINC and SNOMED CT on their company websites and in marketing materials, and systems certified for Meaningful Use are required to support LOINC and SNOMED CT. There is little empirical evidence on the use of semantic interoperability standards in practice. Methods: To characterize the use of standardized vocabularies in electronic laboratory reporting (ELR) messages sent to public health agencies for notifiable disease surveillance, we analyzed ELR messages from two states: Indiana and Wisconsin. We examined the data in the ELR messages where tests and results are reported (3). For each field, the proportion of field values that used either LOINC or SNOMED CT codes were calculated by dividing the number of fields with coded values by the total number of non-null values in fields. Results: Results are summarized in Table-1. In Indiana, less than 17% of incoming ELR messages contained a standardized code for identifying the test performed by the laboratory, and none of the test result fields contained a standardized vocabulary concept. For Wisconsin, none of the incoming ELR messages contained a standardized code for identifying the test performed, and less than 13% of the test result fields contained a SNOMED CT concept. Conclusions: Although Wisconsin and Indiana both have high adoption of advanced health information systems with many hospitals and laboratories using commercial systems which claim to support interoperability, very few ELR messages emanate from real-world systems with interoperable codes to identify tests and clinical results. To effectively use the arriving ELR messages, Indiana and Wisconsin health departments employ software and people workarounds to translate the incoming data into standardized concepts that can be utilized by the states’ surveillance systems. These workarounds present challenges for budget constrained public health departments seeking to leverage Meaningful Use Certified technologies to improve notifiable disease surveillance.