- Browse by Subject
Browsing by Subject "Electrocardiography"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Coupling Interval Variability Differentiates Ventricular Ectopic Complexes Arising in the Aortic Sinus of Valsalva and Great Cardiac Vein From Other Sources(Elsevier, 2014-05-27) Bradfield, Jason S.; Homsi, Mohamed; Shivkumar, Kalyanam; Miller, John M.; Department of Medicine, IU School of MedicineObjectives The objective of this study was to determine whether premature ventricular contractions (PVCs) arising from the aortic sinuses of Valsalva (SOV) and great cardiac vein (GCV) have coupling interval (CI) characteristics that differentiate them from other ectopic foci. Background PVCs occur at relatively fixed CI from the preceding normal QRS complex in most patients. However, we observed patients with PVCs originating in unusual areas (SOV and GCV) in whom the PVC CI was highly variable. We hypothesized that PVCs from these areas occur seemingly randomly because of the lack of electrotonic effects of the surrounding myocardium. Methods Seventy-three consecutive patients referred for PVC ablation were assessed. Twelve consecutive PVC CIs were recorded. The ΔCI (maximum – minimum CI) was measured. Results We studied 73 patients (age 50 ± 16 years, 47% male). The PVC origin was right ventricular (RV) in 29 (40%), left ventricular (LV) in 17 (23%), SOV in 21 (29%), and GCV in 6 (8%). There was a significant difference between the mean ΔCI of RV/LV PVCs compared with SOV/GCV PVCs (33 ± 15 ms vs. 116 ± 52 ms, p < 0.0001). A ΔCI of >60 ms demonstrated a sensitivity of 89%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 94%. Cardiac events were more common in the SOV/GCV group versus the RV/LV group (7 of 27 [26%] vs. 2 of 46 [4%], p < 0.02). Conclusions ΔCI is more pronounced in PVCs originating from the SOV or GCV. A ΔCI of 60 ms helps discriminate the origin of PVCs before diagnostic electrophysiological study and may be associated with increased frequency of cardiac events.Item Enhanced Response to Drug-Induced QT Interval Lengthening in Patients with Heart Failure with Preserved Ejection Fraction(Elsevier, 2020-09) Tisdale, James E.; Jaynes, Heather A.; Overholser, Brian R.; Sowinski, Kevin M.; Fisch, Mark D.; Rodgers, Jo E.; Aldemerdash, Ahmed; Hsu, Chia-Chi; Wang, Nan; Tomaselli Muensterman, Elena; Rao, Vijay U.; Kovacs, Richard J.; Medicine, School of MedicineBackground: Patients with heart failure (HF) with reduced ejection fraction demonstrate enhanced response to drug-induced QT interval lengthening and are at increased risk for torsades de pointes. The influence of HF with preserved ejection fraction (HFpEF) on response to drug-induced QT lengthening is unknown. Methods and results: We administered intravenous ibutilide 0.003 mg/kg to 10 patients with HFpEF and 10 age- and sex-matched control subjects without HF. Serial 12-lead electrocardiograms were obtained for determination of QT intervals. Demographics, maximum serum ibutilide concentrations, area under the serum ibutilide concentration vs time curves, and baseline Fridericia-corrected QT (QTF) (417 ± 14 vs 413 ± 15 ms, P = .54) were similar in the HFpEF and control groups. Area under the effect (QTFvs time) curve (AUEC) from 0 to 1.17 hours during and following the ibutilide infusion was greater in the HFpEF group (519 ± 19 vs 497 ± 18 ms·h, P= .04), as was AUEC from 0 to 8.17 hours (3576 ± 125 vs 3428 ± 161 ms·h, P = .03) indicating greater QTF interval exposure. Maximum QTF (454 ± 15 vs 443 ± 22 ms, P = .18) and maximum percent increase in QTF from baseline (8.2 ± 2.1 vs 6.7 ± 1.9%, P = .10) in the 2 groups were not significantly different. Conclusions: HFpEF is associated with enhanced response to drug-induced QT interval lengthening.Item Feature Selection Techniques for a Machine Learning Model to Detect Autonomic Dysreflexia(Frontiers Media, 2022-08-10) Suresh, Shruthi; Newton, David T.; Everett, Thomas H., IV; Lin, Guang; Duerstock, Bradley S.; Medicine, School of MedicineFeature selection plays a crucial role in the development of machine learning algorithms. Understanding the impact of the features on a model, and their physiological relevance can improve the performance. This is particularly helpful in the healthcare domain wherein disease states need to be identified with relatively small quantities of data. Autonomic Dysreflexia (AD) is one such example, wherein mismanagement of this neurological condition could lead to severe consequences for individuals with spinal cord injuries. We explore different methods of feature selection needed to improve the performance of a machine learning model in the detection of the onset of AD. We present different techniques used as well as the ideal metrics using a dataset of thirty-six features extracted from electrocardiograms, skin nerve activity, blood pressure and temperature. The best performing algorithm was a 5-layer neural network with five relevant features, which resulted in 93.4% accuracy in the detection of AD. The techniques in this paper can be applied to a myriad of healthcare datasets allowing forays into deeper exploration and improved machine learning model development. Through critical feature selection, it is possible to design better machine learning algorithms for detection of niche disease states using smaller datasets.Item Fragmented ECG as a risk marker in cardiovascular diseases(Bentham Science, 2014-08) Jain, Rahul; Singh, Robin; Yamini, Sundermurthy; Das, Mithilesh K.; Department of Medicine, IU School of MedicineVarious noninvasive tests for risk stratification of sudden cardiac death (SCD) were studied, mostly in the context of structural heart disease such as coronary artery disease (CAD), cardiomyopathy and heart failure but have low positive predictive value for SCD. Fragmented QRS complexes (fQRS) on a 12-lead ECG is a marker of depolarization abnormality. fQRS include presence of various morphologies of the QRS wave with or without a Q wave and includes the presence of an additional R wave (R') or notching in the nadir of the R' (fragmentation) in two contiguous leads, corresponding to a major coronary artery territory. fQRS represents conduction delay from inhomogeneous activation of the ventricles due to myocardial scar. It has a high predictive value for myocardial scar and mortality in patients CAD. fQRS also predicts arrhythmic events and mortality in patients with implantable cardioverter defibrillator. It also signifies poor prognosis in patients with nonischemic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and Brugada syndrome. However, fQRS is a nonspecific finding and its diagnostic prognostic should only be interpreted in the presence of pertinent clinical evidence and type of myocardial involvement (structural vs. structurally normal heart).Item Fragmented QRS Complexes on 12‐Lead ECG: A Marker of Cardiac Sarcoidosis as Detected by Gadolinium Cardiac Magnetic Resonance Imaging(Wiley, 2009-10) Homsi, Mohamed; Alsayed, Lamaan; Safadi, Bilal; Mahenthiran, Jo; Das, Mithilesh K.; Medicine, School of MedicineBackground: Fragmented QRS complexes (fQRS) on a 12‐lead ECG are a marker of myocardial scar in patients with coronary artery disease. Cardiac sarcoidosis is also associated with myocardial granuloma formation and scarring. We evaluated the significance of fQRS on a 12‐lead ECG compared to Gadolinium‐delayed enhancement images (GDE) in cardiac magnetic resonance imaging (CMR). Method and results: The ECGs of patients (n = 17, mean age: 52 ± 11 years, male: 53%) with established diagnosis of sarcoidosis who underwent a CMR for evaluation of cardiac involvement were studied. ECG abnormalities included bundle branch block, Q wave, and fQRS. fQRS, Q wave, and bundle branch block were present in 9 (53%), 1 (6%), and 4 (24%) patients, respectively. The sensitivity and specificity of fQRS for detecting abnormal GDE were 100% and 80%, respectively. Sensitivity and specificity of Q waves were 11% and 100%, respectively. Conclusions: fQRS on a 12‐lead ECG in patients with suspected cardiac sarcoidosis are associated with cardiac involvement as detected by GDE on CMR.Item Indexed left ventricular mass to QRS voltage ratio is associated with heart failure hospitalizations in patients with cardiac amyloidosis(Springer, 2021-03) Slivnick, Jeremy A.; Wallner, Alexander L.; Vallakati, Ajay; Truong, Vien T.; Mazur, Wojciech; Elamin, Mohamed B.; Tong, Matthew S.; Raman, Subha V.; Zareba, Karolina M.; Medicine, School of MedicineIn cardiac amyloidosis (CA), amyloid infiltration results in increased left ventricular (LV) mass disproportionate to electrocardiographic (EKG) voltage. We assessed the relationship between LV mass-voltage ratio with subsequent heart failure hospitalization (HHF) and mortality in CA. Patients with confirmed CA and comprehensive cardiovascular magnetic resonance (CMR) and EKG exams were included. CMR-derived LV mass was indexed to body surface area. EKG voltage was assessed using Sokolow, Cornell, and Limb-voltage criteria. The optimal LV mass-voltage ratio for predicting outcomes was determined using receiver operating characteristic curve analysis. The relationship between LV mass-voltage ratio and HHF was assessed using Cox proportional hazards analysis adjusting for significant covariates. A total of 85 patients (mean 69 ± 11 years, 22% female) were included, 42 with transthyretin and 43 with light chain CA. At a median of 3.4-year follow-up, 49% of patients experienced HHF and 60% had died. In unadjusted analysis, Cornell LV mass-voltage ratio was significantly associated with HHF (HR, 1.05; 95% CI 1.02-1.09, p = 0.001) and mortality (HR, 1.05; 95% CI 1.02-1.07, p = 0.001). Using ROC curve analysis, the optimal cutoff value for Cornell LV mass-voltage ratio to predict HHF was 6.7 gm/m2/mV. After adjusting for age, NYHA class, BNP, ECV, and LVEF, a Cornell LV mass-voltage ratio > 6.7 gm/m2/mV was significantly associated with HHF (HR 2.25, 95% CI 1.09-4.61; p = 0.03) but not mortality. Indexed LV mass-voltage ratio is associated with subsequent HHF and may be a useful prognostic marker in cardiac amyloidosis.Item Influence of Oral Progesterone Administration on Drug-Induced QT Interval Lengthening: A Randomized, Double-Blind, Placebo-Controlled Crossover Study(Elsevier, 2016-12) Tisdale, James E.; Jaynes, Heather A.; Overholser, Brian R.; Sowinski, Kevin M.; Flockhart, David A.; Kovacs, Richard J.; Medicine, School of MedicineObjectives We tested the hypothesis that oral progesterone administration attenuates drug-induced QT interval lengthening. Background Evidence from preclinical and human investigations suggests that higher serum progesterone concentrations may be protective against drug-induced QT interval lengthening. Methods In this prospective, double-blind, crossover study, 19 healthy female volunteers (21-40 years) were randomized to receive progesterone 400 mg or matching placebo orally once daily for 7 days timed to the menses phase of the menstrual cycle (between-phase washout period = 49 days). On day 7, ibutilide 0.003 mg/kg was infused over 10 minutes, after which QT intervals were recorded and blood samples collected for 12 hours. Prior to the treatment phases, subjects underwent ECG monitoring for 12 hours to calculate individualized heart rate-corrected QT intervals (QTcI). Results Fifteen subjects completed all study phases. Maximum serum ibutilide concentrations in the progesterone and placebo phases were similar (1247±770 vs 1172±709 pg/mL, p=0.43). Serum progesterone concentrations were higher during the progesterone phase (16.2±11.0 vs 1.2±1.0 ng/mL, p<0.0001), while serum estradiol concentrations in the two phases were similar (89.3±62.8 vs 71.8±31.7 pg/mL, p=0.36). Pre-ibutilide lead II QTcI was significantly lower in the progesterone phase (412±15 vs 419±14 ms, p=0.04). Maximum ibutilide-associated QTcI (443±17 vs 458±19 ms, p=0.003), maximum percent increase in QTcI from pretreatment value (7.5±2.4 vs 9.3±3.4%, p=0.02) and area under the effect (QTcI) curve during the first hour post-ibutilide (497±13 vs 510±16 ms-hr, p=0.002) were lower during the progesterone phase. Progesterone-associated adverse effects included fatigue/malaise and vertigo. Conclusions Oral progesterone administration attenuates drug-induced QTcI lengthening.Item Influence of Zoledronic Acid on Atrial Electrophysiological Parameters and Electrocardiographic Measurements(Wiley Blackwell (John Wiley & Sons), 2015-06) Tisdale, James E.; Allen, Matthew R.; Overholser, Brian R.; Jaynes, Heather A.; Kovacs, Richard J.; Department of Anatomy & Cell Biology, IU School of MedicineINTRODUCTION: Our objective was to determine effects of zoledronic acid (ZA) on atrial electrophysiological parameters and electrocardiographic measurements. METHODS AND RESULTS: Ex vivo perfusion study: Isolated guinea pig hearts were perfused with modified Krebs-Henseleit (K-H) buffer with or without ZA 0.07 mg/kg/L (each n = 6). In ZA-perfused hearts, atrial action potential at 90% repolarization (APD90 ) decreased more from baseline than in controls (-23.2% ± -5.1% vs. -2.1% ± -8.1%, P < 0 .0001), as did APD30 (-28.8% ± -3.8% vs. -2.1% ± -2.1%, P < 0.0001). In vivo dose-response study: Guinea pigs underwent intraperitoneal injections every 2 weeks in 1 of 4 groups (each n = 8): ZA 0.007 mg/kg (low-dose), ZA 0.07 mg/kg (medium-dose), ZA 0.7 mg/kg (high-dose), or placebo. Hearts were excised at 8 weeks and perfused with modified K-H. Atrial effective refractory period (ERP) was lower with medium- and high-dose ZA versus placebo (P = 0.004). Atrial APD30 was lower with high-dose ZA versus placebo, low and medium doses (P < 0.001). Canine ECG study: Mature female beagles received intravenous ZA 0.067 mg/kg or saline (placebo; each n = 6) every 2 weeks for 12 weeks. P wave dispersion was greater in the ZA group (7.7 ± 3.7 vs. 3.4 ± 2.6 ms, P = 0.04). There were no significant differences in P wave index, maximum or minimum P wave duration, or PR interval. CONCLUSION: ZA shortens left atrial APD and ERP and increases P wave dispersion.Item Prognostic value of initial electrocardiography in predicting long-term all-cause mortality in COVID-19(Elsevier, 2022) Kassis, Nicholas; Kumar, Ashish; Gangidi, Shravani; Milinovich, Alex; Kalra, Ankur; Bhargava, Ajay; Menon, Venu; Wazni, Oussama M.; Rickard, John; Khot, Umesh N.; Medicine, School of MedicineBackground: The electrocardiography (ECG) has short-term prognostic value in coronavirus disease 2019 (COVID-19), yet its ability to predict long-term mortality is unknown. This study aimed to elucidate the predictive role of initial ECG on long-term all-cause mortality in patients diagnosed with COVID-19. Methods: In this prospective cohort study, adults with COVID-19 who underwent ECG testing within a 17-hospital health system in Northeast Ohio and Florida between 03/2020-06/2020 were identified. An expert ECG reader analyzed all studies blinded to patient status. The associations of ECG characteristics with long-term all-cause mortality and intensive care unit (ICU) admission were assessed using Cox proportional hazards regression model and multivariable logistic regression models, respectively. Status of long-term mortality was adjudicated on 01/07/2022. Results: Of 837 patients (median age 65 years, 51% female, 44% Black), 683 (81.6%) were hospitalized, 281 (33.6%) required ICU admission, 67 (8.0%) died in-hospital, and 206 (24.6%) died at final follow-up after a median (IQR) of 21 (9-103) days after ECG. Overall, 179 (20.7%) patients presented with sinus tachycardia, 12 (1.4%) with atrial flutter, and 45 (5.4%) with atrial fibrillation (AF). After multivariable adjustment, sinus tachycardia (E-value for HR=3.09, lower CI=2.2) and AF (E-value for HR=3.13, lower CI=2.03) each independently predicted all-cause mortality. At final follow-up, patients with AF had 64.5% probability of death compared with 20.5% for those with normal sinus rhythm (P<.0001). Conclusions: Sinus tachycardia and AF on initial ECG strongly predict long-term all-cause mortality in COVID-19. The ECG can serve as a powerful long-term prognostic tool in COVID-19.Item Right Ventricular Infarction Presenting With Refractory Hypoxia Due to Shunting Across a Patent Foramen Ovale(Elsevier, 2021-03-03) Wilson, Stephanie M.; Phookan, Sujoy; Kovacs, Richard J.; Medicine, School of MedicineRight ventricular infarction is often associated with significant morbidity and mortality. Here, we report a case of right ventricular infarction associated with persistent hypoxia due to acute right-to-left shunting through a patent foramen ovale.