- Browse by Subject
Browsing by Subject "Elastin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Age-related changes in structure and extracellular matrix protein expression levels in rat tendons(Springer, Part of Springer Science+Business Media, 2013-12) Kostrominova, Tatiana Y.; Brooks, Susan V.; Department of Anatomy & Cell Biology, School of MedicineThe musculoskeletal system (muscle–tendon–bone) demonstrates numerous age-related changes, with modifications in tendons the least well studied, although increased predisposition to tendinopathy and rupture have been reported. In order to gain insights into the basis of age-associated increase in tendon injuries, we compared Achilles and tibialis anterior tendons and myotendinous junctions (MTJs) from 3- to 5- and 22- to 25-month-old rats for underlying structure and composition. Significant decreases were observed by qRT-PCR for collagen I, III, and V mRNA expression in tendons of old rats, but immunostaining detected no apparent differences in collagen I and V expression on the protein level. Tendons of old compared with young rats had decreased mRNA expression levels of proteoglycan 4 (PRG4) and elastin (Eln), but no differences in the mRNA expression of connective tissue growth factor, TGF-beta 1, or stromal cell-derived factor 1. For PRG4, immunostaining showed good correlation with qRT-PCR results. This is the first study to show reductions in PRG4 in tendons and MTJs of old rats. Decreased PRG4 expression in tendons could result in increased tendon stiffness and may be associated with decreased activity in the elderly. The diminished collagen mRNA expression in combination with decreased PRG4 and Eln mRNA expression may be associated with increased risk of tendon injury with aging.Item Non-linear micromechanics of soft tissues(Elsevier, 2014-11) Chen, Huan; Zhao, Xuefeng; Kassab, Ghassan; Biomedical Engineering, School of Engineering and TechnologyMicrostructure-based constitutive models have been adopted in recent studies of non-linear mechanical properties of biological soft tissues. These models provide more accurate predictions of the overall mechanical responses of tissues than phenomenological approaches. Based on standard approximations in non-linear mechanics, we classified the microstructural models into three categories: (1) uniform-field models with solid-like matrix, (2) uniform-field models with fluid-like matrix, and (3) second-order estimate models. The first two categories assume affine deformation field where the deformation of microstructure is the same as that of the tissue, regardless of material heterogeneities; i.e., they represent the upper bounds of the exact effective strain energy and stress of soft tissues. In addition, the first type is not purely structurally motivated and hence cannot accurately predict the microscopic mechanical behaviors of soft tissues. The third category considers realistic geometrical features, material properties of microstructure and interactions among them and allows for flexible deformation in each constituent. The uniform-field model with fluid-like matrix and the second-order estimate model are microstructure-based, and can be applied to different tissues based on micro-structural features.