- Browse by Subject
Browsing by Subject "ERG"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 4296 Targeting ERG Through Toll-Like Receptor 4 in Prostate Cancer(Cambridge University Press, 2020-07-29) Greulich, Ben; Plotnik, Josh; Hollenhorst, Peter; Medicine, School of MedicineOBJECTIVES/GOALS: The objective of this research was to learn how the oncogenic transcription factor, ERG, is regulated in prostate cancer. If we could learn how ERG is regulated and which genes are important for its oncogenic phenotype in prostate cells, we could design new therapeutic strategies against ERG, which has proven to be difficult to target. METHODS/STUDY POPULATION: We conducted an shRNA screen in prostate cells to determine candidate genes and pathways that are important for ERG function. To validate the findings of the screen, we performed a variety of cell-based functional assays, including trans-well migration, wound healing, and clonogenic survival assays. To further investigate the mechanism between ERG and the genes revealed by the screen, we performed biochemical and molecular biology experiments such as Western blotting and qRT-PCR for protein and mRNA expression, co-immunoprecipitation assays to determine protein-protein interactions, and chromatin immunoprecipitation (ChIP-qPCR) to determine transcription factor binding to DNA sites. RESULTS/ANTICIPATED RESULTS: The screen revealed that genes involved in the toll-like receptor 4 (TLR4) pathway are important for ERG-mediated migration. We tested the effect of a TLR4 inhibitor on ERG function and observed decreased migration and clonogenic survival exclusively in ERG-positive cells. Expression of pMEK and pERG was reduced when TLR4 was inhibited, which suggests a mechanism in which TLR4 upregulates pMEK, leading to the phosphorylation and activation of ERG. This is supported by functional assays in which cells expressing a phosphomimetic ERG are resistant to the TLR4 inhibitor. We demonstrated that ERG drives the transcription of TLR4 and its endogenous ligands HSPA8 and BGN. Therefore, ERG can sensitize the cell to TLR4 activation by increasing the number of receptors as well as providing the ligands needed for stimulation. DISCUSSION/SIGNIFICANCE OF IMPACT: This research provides a new therapeutic pathway for treating ERG-positive patients through TLR4 inhibition. This can be beneficial because many patients become resistant to the standard therapy, leaving very few treatment options. TLR4-based therapies could provide an alternative for patients who have developed resistance.Item Aberrant ERG expression associates with downregulation of miR‐4638‐5p and selected genomic alterations in a subset of diffuse large B‐cell lymphoma(Wiley, 2019-10) Zhang, Shanxiang; Wang, Lin; Cheng, Liang; Pathology and Laboratory Medicine, School of MedicineERG (avian v‐ets erythroblastosis virus E26 oncogene homolog), an oncoprotein in prostate carcinoma and Ewing's sarcoma is associated with poor prognosis in patients with acute myeloid leukemia and T lymphoblastic leukemia. However little is known about ERG in lymphoma. Here we studied ERG in diffuse large B‐cell lymphoma (DLBCL) by immunohistochemistry, fluorescence in situ hybridization (FISH), genome‐wide microRNA (miRNA) expression profiling, real‐time reverse‐transcriptase polymerase chain reaction (RT‐PCR) and whole exome sequencing (WES). Approximately 30% of de novo DLBCLs (37 of 118) expressed ERG (ERG+). ERG expression showed no significant correlation with DLBCL cell‐of‐origin classification, patient's age, sex, nodal, or extranodal disease status, tumor expression of p53 or p63. There was no ERG rearrangement in 10 randomly selected ERG+ DLBCLs by FISH. Forty‐three miRNAs showed significant differential expression between ERG+ and ERG− DLBCLs. Downregulation of miR‐4638‐5p was confirmed by real‐time RT‐PCR. WES not only confirmed known gene mutations in DLBCLs but also revealed multiple novel gene mutations in POLA1, E2F1, PSMD8, AXIN1, GAB2, and GNB2L1, which occur more frequently in ERG+ DLBCLs. In conclusion, our studies demonstrated aberrant ERG expression in a subset of DLBCL, which is associated with downregulation of miR‐4638‐5p. In comparison with ERG‐negative DLBCL, ERG+ DLBCL more likely harbors mutations in genes important in cell cycle control, B‐cell receptor‐mediated signaling and degradation of β‐catenin. Further clinicopathological correlation and functional studies of ERG‐related miRNAs and pathways may provide new insight into the pathogenesis of DLBCL and reveal novel targets for better management of patients with DLBCL.Item An Interaction with Ewing's Sarcoma Breakpoint Protein EWS Defines a Specific Oncogenic Mechanism of ETS Factors Rearranged in Prostate Cancer(Elsevier, 2016-10-25) Kedage, Vivekananda; Selvaraj, Nagarathinam; Nicholas, Taylor R.; Budka, Justin A.; Plotnik, Joshua P.; Jerde, Travis J.; Hollenhorst, Peter C.; Department of Pharmacology and Toxicology, IU School of MedicineMore than 50% of prostate tumors have a chromosomal rearrangement resulting in aberrant expression of an oncogenic ETS family transcription factor. However, mechanisms that differentiate the function of oncogenic ETS factors expressed in prostate tumors from non-oncogenic ETS factors expressed in normal prostate are unknown. Here, we find that four oncogenic ETS (ERG, ETV1, ETV4, and ETV5), and no other ETS, interact with the Ewing's sarcoma breakpoint protein, EWS. This EWS interaction was necessary and sufficient for oncogenic ETS functions including gene activation, cell migration, clonogenic survival, and transformation. Significantly, the EWS interacting region of ERG has no homology with that of ETV1, ETV4, and ETV5. Therefore, this finding may explain how divergent ETS factors have a common oncogenic function. Strikingly, EWS is fused to various ETS factors by the chromosome translocations that cause Ewing's sarcoma. Therefore, these findings link oncogenic ETS function in both prostate cancer and Ewing's sarcoma.