- Browse by Subject
Browsing by Subject "EM algorithm"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A Gamma-frailty proportional hazards model for bivariate interval-censored data(Elsevier, 2018-12) Gamage, Prabhashi W. Withana; McMahan, Christopher S.; Wang, Lianming; Tu, Wanzhu; Biostatistics, School of Public HealthCorrelated survival data naturally arise from many clinical and epidemiological studies. For the analysis of such data, the Gamma-frailty proportional hazards (PH) model is a popular choice because the regression parameters have marginal interpretations and the statistical association between the failure times can be explicitly quantified via Kendall’s tau. Despite their popularity, Gamma-frailty PH models for correlated interval-censored data have not received as much attention as analogous models for right-censored data. A Gamma-frailty PH model for bivariate interval-censored data is presented and an easy to implement expectation–maximization (EM) algorithm for model fitting is developed. The proposed model adopts a monotone spline representation for the purposes of approximating the unknown conditional cumulative baseline hazard functions, significantly reducing the number of unknown parameters while retaining modeling flexibility. The EM algorithm was derived from a data augmentation procedure involving latent Poisson random variables. Extensive numerical studies illustrate that the proposed method can provide reliable estimation and valid inference, and is moreover robust to the misspecification of the frailty distribution. To further illustrate its use, the proposed method is used to analyze data from an epidemiological study of sexually transmitted infections.Item Introducing COZIGAM: An R Package for Unconstrained and Constrained Zero-Inflated Generalized Additive Model Analysis(Foundation for Open Access Statistics, 2010-07-26) Liu, Hai; Chan, Kung-Sik; Medicine, School of MedicineZero-inflation problem is very common in ecological studies as well as other areas. Nonparametric regression with zero-inflated data may be studied via the zero-inflated generalized additive model (ZIGAM), which assumes that the zero-inflated responses come from a probabilistic mixture of zero and a regular component whose distribution belongs to the 1-parameter exponential family. With the further assumption that the probability of non-zero-inflation is some monotonic function of the mean of the regular component, we propose the constrained zero-inflated generalized additive model (COZIGAM) for analyzingzero-inflated data. When the hypothesized constraint obtains, the new approach provides a unified framework for modeling zero-inflated data, which is more parsimonious and efficient than the unconstrained ZIGAM. We have developed an R package COZIGAM which contains functions that implement an iterative algorithm for fitting ZIGAMs and COZIGAMs to zero-inflated data basedon the penalized likelihood approach. Other functions included in the packageare useful for model prediction and model selection. We demonstrate the use ofthe COZIGAM package via some simulation studies and a real application.Item Joint models for longitudinal and survival data(2014-07-11) Yang, Lili; Gao, Sujuan; Yu, Menggang; Tu, Wanzhu; Callahan, Christopher M.; Zollinger, TerrellEpidemiologic and clinical studies routinely collect longitudinal measures of multiple outcomes. These longitudinal outcomes can be used to establish the temporal order of relevant biological processes and their association with the onset of clinical symptoms. In the first part of this thesis, we proposed to use bivariate change point models for two longitudinal outcomes with a focus on estimating the correlation between the two change points. We adopted a Bayesian approach for parameter estimation and inference. In the second part, we considered the situation when time-to-event outcome is also collected along with multiple longitudinal biomarkers measured until the occurrence of the event or censoring. Joint models for longitudinal and time-to-event data can be used to estimate the association between the characteristics of the longitudinal measures over time and survival time. We developed a maximum-likelihood method to joint model multiple longitudinal biomarkers and a time-to-event outcome. In addition, we focused on predicting conditional survival probabilities and evaluating the predictive accuracy of multiple longitudinal biomarkers in the joint modeling framework. We assessed the performance of the proposed methods in simulation studies and applied the new methods to data sets from two cohort studies.Item Joint Models for Multiple Longitudinal Processes and Time-to-event Outcome(Taylor & Francis, 2016) Yang, Lili; Yu, Menggang; Gao, Sujuan; Department of Biostatistics, Richard M. Fairbanks School of Public HealthJoint models are statistical tools for estimating the association between time-to-event and longitudinal outcomes. One challenge to the application of joint models is its computational complexity. Common estimation methods for joint models include a two-stage method, Bayesian and maximum-likelihood methods. In this work, we consider joint models of a time-to-event outcome and multiple longitudinal processes and develop a maximum-likelihood estimation method using the expectation–maximization algorithm. We assess the performance of the proposed method via simulations and apply the methodology to a data set to determine the association between longitudinal systolic and diastolic blood pressure measures and time to coronary artery disease.Item A sequential classification rule based on multiple quantitative tests in the absence of a gold standard(Wiley, 2016-04) Zhang, Jingyang; Zhang, Ying; Chaloner, Kathryn; Stapleton, Jack T.; Department of Biostatistics, School of Public HealthIn many medical applications, combining information from multiple biomarkers could yield a better diagnosis than any single one on its own. When there is a lack of a gold standard, an algorithm of classifying subjects into the case and non-case status is necessary for combining multiple markers. The aim of this paper is to develop a method to construct a composite test from multiple applicable tests and derive an optimal classification rule under the absence of a gold standard. Rather than combining the tests, we treat the tests as a sequence. This sequential composite test is based on a mixture of two multivariate normal latent models for the distribution of the test results in case and non-case groups, and the optimal classification rule is derived returning the greatest sensitivity at a given specificity. This method is applied to a real-data example and simulation studies have been carried out to assess the statistical properties and predictive accuracy of the proposed composite test. This method is also attainable to implement nonparametrically.Item Variable selection and structural discovery in joint models of longitudinal and survival data(2014) He, Zangdong; Tu, Wanzhu; Yu, Zhangsheng; Liu, Hai; Song, YiqingJoint models of longitudinal and survival outcomes have been used with increasing frequency in clinical investigations. Correct specification of fixed and random effects, as well as their functional forms is essential for practical data analysis. However, no existing methods have been developed to meet this need in a joint model setting. In this dissertation, I describe a penalized likelihood-based method with adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions for model selection. By reparameterizing variance components through a Cholesky decomposition, I introduce a penalty function of group shrinkage; the penalized likelihood is approximated by Gaussian quadrature and optimized by an EM algorithm. The functional forms of the independent effects are determined through a procedure for structural discovery. Specifically, I first construct the model by penalized cubic B-spline and then decompose the B-spline to linear and nonlinear elements by spectral decomposition. The decomposition represents the model in a mixed-effects model format, and I then use the mixed-effects variable selection method to perform structural discovery. Simulation studies show excellent performance. A clinical application is described to illustrate the use of the proposed methods, and the analytical results demonstrate the usefulness of the methods.