- Browse by Subject
Browsing by Subject "ECM"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Cancer Associated Fibroblasts: Naughty Neighbors That Drive Ovarian Cancer Progression(MDPI, 2018-10-29) Dasari, Subramanyam; Fang, Yiming; Mitra, Anirban K.; Medical and Molecular Genetics, School of MedicineOvarian cancer is the most lethal gynecologic malignancy, and patient prognosis has not improved significantly over the last several decades. In order to improve therapeutic approaches and patient outcomes, there is a critical need for focused research towards better understanding of the disease. Recent findings have revealed that the tumor microenvironment plays an essential role in promoting cancer progression and metastasis. The tumor microenvironment consists of cancer cells and several different types of normal cells recruited and reprogrammed by the cancer cells to produce factors beneficial to tumor growth and spread. These normal cells present within the tumor, along with the various extracellular matrix proteins and secreted factors, constitute the tumor stroma and can compose 10⁻60% of the tumor volume. Cancer associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment, and play a critical role in promoting many aspects of tumor function. This review will describe the various hypotheses about the origin of CAFs, their major functions in the tumor microenvironment in ovarian cancer, and will discuss the potential of targeting CAFs as a possible therapeutic approach.Item Global targetome analysis reveals critical role of miR-29a in pancreatic stellate cell mediated regulation of PDAC tumor microenvironment(BMC, 2020-07-13) Dey, Shatovisha; Liu, Sheng; Factora, Tricia D.; Taleb, Solaema; Riverahernandez, Primavera; Udari, Lata; Zhong, Xiaoling; Wan, Jun; Kota, Janaiah; Medical and Molecular Genetics, School of MedicineBackground Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive forms of malignancies with a nearly equal incidence and mortality rates in patients. Pancreatic stellate cells (PSCs) are critical players in PDAC microenvironment to promote the aggressiveness and pathogenesis of the disease. Dysregulation of microRNAs (miRNAs) have been shown to play a significant role in progression of PDAC. Earlier, we observed a PSC-specific downregulation of miR-29a in PDAC pancreas, however, the mechanism of action of the molecule in PSCs is still to be elucidated. The current study aims to clarify the regulation of miR-29a in PSCs and identifies functionally important downstream targets that contribute to tumorigenic activities during PDAC progression. Methods In this study, using RNAseq approach, we performed transcriptome analysis of paired miR-29a overexpressing and control human PSCs (hPSCs). Enrichment analysis was performed with the identified differentially expressed genes (DEGs). miR-29a targets in the dataset were identified, which were utilized to create network interactions. Western blots were performed with the top miR-29a candidate targets in hPSCs transfected with miR-29a mimic or scramble control. Results RNAseq analysis identified 202 differentially expressed genes, which included 19 downregulated direct miR-29a targets. Translational repression of eight key pro-tumorigenic and -fibrotic targets namely IGF-1, COL5A3, CLDN1, E2F7, MYBL2, ITGA6 and ADAMTS2 by miR-29a was observed in PSCs. Using pathway analysis, we find that miR-29a modulates effectors of IGF-1-p53 signaling in PSCs that may hinder carcinogenesis. We further observe a regulatory role of the molecule in pathways associated with PDAC ECM remodeling and tumor-stromal crosstalk, such as INS/IGF-1, RAS/MAPK, laminin interactions and collagen biosynthesis. Conclusions Together, our study presents a comprehensive understanding of miR-29a regulation of PSCs, and identifies essential pathways associated with PSC-mediated PDAC pathogenesis. The findings suggest an anti-tumorigenic role of miR-29a in the context of PSC-cancer cell crosstalk and advocates for the potential of the molecule in PDAC targeted therapies.Item Productive Cross-Talk with the Microenvironment: A Critical Step in Ovarian Cancer Metastasis(MDPI, 2019-10-21) Abd El Aziz, Mohamed A.; Agarwal, Komal; Dasari, Subramanyam; Mitra, Anirban K.; Medical and Molecular Genetics, School of MedicineMost ovarian cancer patients present with disseminated disease at the time of their diagnosis, which is one of the main reasons for their poor prognosis. Metastasis is a multi-step process and a clear understanding of the mechanism of regulation of these steps remains elusive. Productive reciprocal interactions between the metastasizing ovarian cancer cells and the microenvironment of the metastatic site or the tumor microenvironment play an important role in the successful establishment of metastasis. Much progress has been made in the recent past in our understanding of such interactions and the role of the cellular and acellular components of the microenvironment in establishing the metastatic tumors. This review will outline the role of the microenvironmental components of the ovarian cancer metastatic niche and their role in helping establish the metastatic tumors. Special emphasis will be given to the mesothelial cells, which are the first cells encountered by the cancer cells at the site of metastasis.Item Proteomic profiling of TGFBI-null mouse corneas reveals only minor changes in matrix composition supportive of TGFBI knockdown as therapy against TGFBI-linked corneal dystrophies(Wiley, 2017) Poulsen, Ebbe Toftgaard; Runager, Kasper; Nielsen, Nadia Sukusu; Lukassen, Marie V.; Thomsen, Karen; Snider, Paige; Simmons, Olga; Vorum, Henrik; Conway, Simon J.; Enghild, Jan J.; Pediatrics, School of MedicineTGFBIp is a constituent of the extracellular matrix in many human tissues including the cornea, where it is one of the most abundant proteins expressed. TGFBIp interacts with Type I, II, IV, VI, and XII collagens as well as several members of the integrin family, suggesting it plays an important role in maintaining structural integrity and possibly corneal transparency as well. Significantly, more than 60 point mutations within the TGFBI gene have been reported to result in aberrant TGFBIp folding and aggregation in the cornea, resulting in severe visual impairment and blindness. Several studies have focused on targeting TGFBIp in the cornea as a therapeutic approach to treat TGFBI-linked corneal dystrophies, but the effect of this approach on corneal homeostasis and matrix integrity remained unknown. In the current study, we evaluated the histological and proteomic profiles of corneas from TGFBI-deficient mice as well as potential redundant functions of the paralogous protein POSTN. The absence of TGFBIp in mouse corneas did not grossly affect the collagen scaffold, and POSTN is unable to compensate for loss of TGFBIp. Proteomic comparison of wild-type and TGFBI−/− mice revealed 11 proteins were differentially regulated, including Type VI and XII collagens. However, as these alterations did not manifest at the macroscopic and behavioral levels, these data support partial or complete TGFBI knockdown as a potential therapy against TGFBI-linked corneal dystrophies. Lastly, in situ hybridization verified TGFBI mRNA in the epithelial cells but not in other cell types, supportive of a therapy directed specifically at this lineage.Item Skin Transcriptome of Middle-Aged Women Supplemented With Natural Herbo-mineral Shilajit Shows Induction of Microvascular and Extracellular Matrix Mechanisms(Taylor & Francis, 2019-06-04) Das, Amitava; Masry, Mohamed S. El; Gnyawali, Surya C.; Ghatak, Subhadip; Singh, Kanhaiya; Stewart, Richard; Lewis, Madeline; Saha, Abhijoy; Gordillo, Gayle; Khanna, Savita; Surgery, School of MedicineObjective: Shilajit is a pale-brown to blackish-brown organic mineral substance available from Himalayan rocks. We demonstrated that in type I obese humans, shilajit supplementation significantly upregulated extracellular matrix (ECM)–related genes in the skeletal muscle. Such an effect was highly synergistic with exercise. The present study (clinicaltrials.gov ) aimed to evaluate the effects of shilajit supplementation on skin gene expression profile and microperfusion in healthy adult females. Methods: The study design comprised six total study visits including a baseline visit (V1) and a final 14-week visit (V6) following oral shilajit supplementation (125 or 250 mg bid). A skin biopsy of the left inner upper arm of each subject was collected at visit 2 and visit 6 for gene expression profiling using Affymetrix Clariom™ D Assay. Skin perfusion was determined by MATLAB processing of dermascopic images. Transcriptome data were normalized and subjected to statistical analysis. The differentially regulated genes were subjected to Ingenuity Pathway Analysis (IPA®). The expression of the differentially regulated genes identified by IPA® were verified using real-time polymerasechain reaction (RT-PCR). Results: Supplementation with shilajit for 14 weeks was not associated with any reported adverse effect within this period. At a higher dose (250 mg bid), shilajit improved skin perfusion when compared to baseline or the placebo. Pathway analysis identified shilajit-inducible genes relevant to endothelial cell migration, growth of blood vessels, and ECM which were validated by quantitative real-time polymerasechain reaction (RT-PCR) analysis. Conclusions: This work provides maiden evidence demonstrating that oral shilajit supplementation in adult healthy women induced genes relevant to endothelial cell migration and growth of blood vessels. Shilajit supplementation improved skin microperfusion.Item Stabilized collagen matrix dressing improves wound macrophage function and epithelialization(Federation of American Society of Experimental Biology, 2019-02) El Masry, Mohamed S.; Chaffee, Scott; Das Ghatak, Piya; Mathew-Steiner, Shomita S.; Das, Amitava; Higuita-Castro, Natalia; Roy, Sashwati; Anani, Raafat A.; Sen, Chandan K.; Surgery, School of MedicineDecellularized matrices of biologic tissue have performed well as wound care dressings. Extracellular matrix–based dressings are subject to rapid degradation by excessive protease activity at the wound environment. Stabilized, acellular, equine pericardial collagen matrix (sPCM) wound care dressing is flexible cross-linked proteolytic enzyme degradation resistant. sPCM was structurally characterized utilizing scanning electron and atomic force microscopy. In murine excisional wounds, sPCM was effective in mounting an acute inflammatory response. Postwound inflammation resolved rapidly, as indicated by elevated levels of IL-10, arginase-1, and VEGF, and lowering of IL-1β and TNF-α. sPCM induced antimicrobial proteins S100A9 and β-defensin-1 in keratinocytes. Adherence of Pseudomonas aeruginosa and Staphylococcus aureus on sPCM pre-exposed to host immune cells in vivo was inhibited. Excisional wounds dressed with sPCM showed complete closure at d 14, while control wounds remained open. sPCM accelerated wound re-epithelialization. sPCM not only accelerated wound closure but also improved the quality of healing by increased collagen deposition and maturation. Thus, sPCM is capable of presenting scaffold functionality during the course of wound healing. In addition to inducing endogenous antimicrobial defense systems, the dressing itself has properties that minimize biofilm formation. It mounts robust inflammation, a process that rapidly resolves, making way for wound healing to advance.—El Masry, M. S., Chaffee, S., Das Ghatak, P., Mathew-Steiner, S. S., Das, A., Higuita-Castro, N., Roy, S., Anani, R. A., Sen, C. K. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization.