- Browse by Subject
Browsing by Subject "Dyrk1a"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Correction of cerebellar movement related deficits by normalizing Dyrk1a copy number in the Ts65Dn mouse model for Down syndrome(Office of the Vice Chancellor for Research, 2016-04-08) Patel, Roshni; Stringer, Megan; Abeysekera, Irushi; Roper, Randall J.; Goodlett, Charles R.Elucidation of the underlying mechanisms involved in brain related deficits of Down syndrome (DS) would be useful for consideration of therapeutic interventions. Several DSspecific phenotypes have been hypothesized to be linked to altered expression or function of specific trisomic genes. One such gene of interest is D YRK1A , which has been implicated in behavioral functions of the hippocampus and cerebellum. The Ts65Dn mouse model for DS includes a triplication of D yrk1a in addition to a triplication of >100 other human chromosome 21 mouse orthologs. To evaluate the role of D yrk1a in cerebellar function, we have genetically normalized the D yrk1a copy number in otherwise trisomicTs65Dn mice and reduced D yrk1a copy number in otherwise euploid mice (2N) for a total of 3 alternative genetic doses of D yrk1a: EuploidDyrk1a +/+ , EuploidDyrk1a +/, Ts65DnDyrk1a +/+/+ , and Ts65DnDyrk1a +/+/. Cerebellar movementrelated function in these knockdown models is being assessed through a novel behavioral balance beam task. Additionally, levels of D yrk1a activity in the cerebellum for all genotypes were analyzed by HPLC. We have previously demonstrated that Ts65DnDyrk1a +/+/+ mice perform worse in the balance beam task in comparison to EuploidDyrk1a +/+ mice. Preliminary results of the current study do not indicate such a difference among Ts65DnDyrk1a +/+/+ mice in comparison to EuploidDyrk1a +/+ mice. We hypothesize that the lack of replication of the previous findings may be due to differences in postweaning housing environments. Mice in the previous study were singlehoused, whereas mice in the present study were grouphoused, which may help mitigate motor deficits in the trisomic mice. Additionally, current trends display a deficit in balance beam performance of both the EuploidDyrk1a +/and the Ts65DnDyrk1a +/+/groups, which suggests that reducing the copy number of D yrk1a by one may have detrimental effects on motor coordination. Concomitant analysis of the balance beam performances and Dyrk1a activity levels may indicate the sensitivity of the balance beam task to assess the role Dyrk1a activity in cerebellar function.Item DYRK1A-Related Trabecular Defects in Male Ts65Dn Mice Emerge During a Critical Developmental Window(2021-08) LaCombe, Jonathan M.; Roper, Randall; Goodlett, Charles; Li, Jiliang; Wallace, Joseph; Meyer, JasonDown syndrome (DS) is a complex genetic disorder caused by the triplication of human chromosome 21 (Hsa21). The presence of an extra copy of an entire chromosome greatly disrupts the copy number and expression of over 350 protein coding genes. This gene dosage imbalance has far-reaching effects on normal development and aging, leading to cognitive and skeletal defects that emerge earlier in life than the general population. The present study begins by characterizing skeletal development in young male Ts65Dn mice to test the hypothesis that skeletal defects in male Ts65Dn mice are developmental in nature.Femurs from young mice ranging from postnatal day 12- to 42-days of age (P12-42) were measured and analyzed by microcomputed tomography (μCT). Cortical defects were present generally throughout development, but trabecular defects emerged at P30 and persisted until P42. The gene Dual-specificity tyrosine-regulated kinase 1a (Dyrk1a) is triplicated in both DS and in Ts65Dn mice and has been implicated as a putative cause of both cognitive and skeletal defects. To test the hypothesis that trisomic Dyrk1a is related to the emergence of trabecular defects at P30, expression of Dyrk1a in the femurs of male Ts65Dn mice was quantified by qPCR. Expression was shown to fluctuate throughout development and overexpression generally aligned with the emergence of trabecular defects at P30. The growth rate in trabecular measures between male Ts65Dn and euploid littermates was similar between P30 and P42, suggesting a closer look into cellular mechanisms at P42. Assessment of proliferation of BMSCs, differentiation and activity of osteoblasts showed no significant differences between Ts65Dn and euploid cellular activity, suggesting that the cellular microenvironment has a greater influence on cellular activity than genetic background. These data led to the hypothesis that reduction of Dyrk1a gene expression and pharmacological inhibition of DYRK1A could be executed during a critical period to prevent the emergence of trabecular defects at P30. To tests this hypothesis, doxycycline-induced cre-lox recombination to reduce Dyrk1a gene copy number or the DYRK1A inhibitor CX-4945 began at P21. The results of both genetic and pharmacological interventions suggest that trisomic Dyrk1a does not influence the emergence of trabecular defects up to P30. Instead, data suggest that the critical window for the rescue of trabecular defects lies between P30 and P42.Item The Effects on Novel Object Recognition by Genetic Reduction of Dyrk1a to Normal Levels in Otherwise Trisomic Ts65Dn Down Syndrome Mice(Office of the Vice Chancellor for Research, 2016-04-08) Parker, Abigail; Stringer, Megan; Goodlett, Charles R.; Roper, Randall J.Down syndrome (DS) is caused by the triplication of chromosome 21 (Hsa21) in humans and is the leading genetic cause of intellectual disability. Ts65Dn mice are used as a model of Down syndrome, with about half of the genes in three copies of those triplicated on Hsa21 in individuals with DS. Overexpression of Dyrk1a, a gene found to be triplicated in both individuals with DS and Ts65Dn mice, has been linked to learning and memory deficits. Mice are naturally drawn to novel objects. As such, the Novel Object Recognition (NOR) test can be used to determine if Ts65Dn as compared to normal mice are impaired in discriminating novel objects from previously explored objects. In our current study, Ts65Dn mice with two copies of Dyrk1a were compared to Ts65Dn and euploid mice using the NOR task. We hypothesize that Ts65Dn, Dyrk1a+/- mice would perform as well as euploid mice on the NOR task, given that they both have two copies of Dyrk1a. Our preliminary results indicate that a genotype effect between trisomic mice and euploid mice is not observed. Additionally, Ts65Dn control mice and euploid control mice have a higher discrimination ratio than their Dyrk1a knockdown counterparts. These results indicate that overexpression of Dyrk1a may not be entirely responsible for deficits in learning and memory.Item Molecular and Cellular Mechanisms Leading to Similar Phenotypes in Down and Fetal Alcohol Syndromes(2013-08-22) Solzak, Jeffrey Peter; Roper, Randall J.; Marrs, James; Kusmierczyk, Andrew; Atkinson, SimonDown syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from cognitive impairment to craniofacial abnormalities. While DS originates from the trisomy of human chromosome 21 and FAS from prenatal alcohol consumption, many of the defining characteristics for these two disorders are stunningly similar. A survey of the literature revealed over 20 similar craniofacial and structural deficits in both human and mouse models of DS and FAS. We hypothesized that the similar phenotypes observed are caused by disruptions in common molecular or cellular pathways during development. To test our hypothesis, we examined morphometric, genetic, and cellular phenotypes during development of our DS and FAS mouse models at embryonic days 9.5-10.5. Our preliminary evidence indicates that during early development, dysregulation of Dyrk1a and Rcan1, cardinal genes affecting craniofacial and neurological precursors of DS, are also dysregulated in embryonic FAS models. Furthermore, Caspase 3 was also found to have similar expression in DS and FAS craniofacial neural crest derived tissues such as the first branchial arch (BA1) and regions of the brain. This may explain a developmental deficit by means of apoptosis. We have also investigated the expression of pAkt, a protein shown to be affected in FAS models, in cells located within the craniofacial precursor of Ts65Dn. Recent research shows that Ttc3, a gene that is triplicated and shown to be overexpressed in the BA1 and neural tube of Ts65Dn, targets pAkt in the nucleus affecting important transcription factors regulating cell cycle and cell survival. While Akt has been shown to play a role in neuronal development, we hypothesize that it also affects similar cellular properties in craniofacial precursors during development. By comparing common genotypes and phenotypes of DS and FAS we may provide common mechanisms to target for potential treatments of both disorders. One of the least understood phenotypes of DS is their deficient immune system. Many individuals with DS have varying serious illnesses ranging from coeliac disease to respiratory infections that are a direct result of this immunodeficiency. Proteasomes are an integral part of a competent and efficient immune system. It has been observed that mice lacking immunoproteasomes present deficiencies in providing MHC class I peptides, proteins essential in identifying infections. A gene, Psmg1 (Dscr2), triplicated in both humans and in Ts65Dn mice, is known to act as a proteasome assembly chaperone for the 20S proteasome. We hypothesized that a dysregulation in this gene promotes a proteasome assembly aberration, impacting the efficiency of the DS immune system. To test this hypothesis we performed western blot analysis on specific precursor and processed β-subunits of the 20S proteasome in thymic tissue of adult Ts65Dn. While the β-subunits tested displayed no significant differences between trisomic and euploid mice we have provided further insight to the origins of immunodeficiency in DS.Item Sex-specific trisomic Dyrk1a-related skeletal phenotypes during development in a Down syndrome model(The Company of Biologists, 2024) LaCombe, Jonathan M.; Sloan, Kourtney; Thomas, Jared R.; Blackwell, Matthew P.; Crawford, Isabella; Bishop, Flannery; Wallace, Joseph M.; Roper, Randall J.; Biology, School of ScienceSkeletal insufficiency affects all individuals with Down syndrome (DS) or trisomy 21 and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to those in typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30, when there were persistent trabecular and cortical deficits and Dyrk1a was trending toward overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with trisomy 21.