- Browse by Subject
Browsing by Subject "Duchenne muscular dystrophy"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Adenylosuccinic Acid: An Orphan Drug with Untapped Potential(MDPI, 2023-05-31) Rybalka, Emma; Kourakis, Stephanie; Bonsett, Charles A.; Moghadaszadeh, Behzad; Beggs, Alan H.; Timpani, Cara A.; Neurology, School of MedicineAdenylosuccinic acid (ASA) is an orphan drug that was once investigated for clinical application in Duchenne muscular dystrophy (DMD). Endogenous ASA participates in purine recycling and energy homeostasis but might also be crucial for averting inflammation and other forms of cellular stress during intense energy demand and maintaining tissue biomass and glucose disposal. This article documents the known biological functions of ASA and explores its potential application for the treatment of neuromuscular and other chronic diseases.Item The BDNF rs6265 Polymorphism is a Modifier of Cardiomyocyte Contractility and Dilated Cardiomyopathy(MDPI, 2020-10-10) Raucci, Frank J.; Singh, Anand Prakash; Soslow, Jonathan; Markham, Larry W.; Zhong, Lin; Aljafar, Wejdan; Lessiohadi, Natasja; Awgulewitsch, Cassandra P.; Umbarkar, Prachi; Zhang, Qinkun; Cannon, Presley L.; Buchowski, Maciej; Roland, Joseph T.; Carrier, Erica J.; Burnette, William B.; Hatzopoulos, Antonis K.; Lal, Hind; Galindo, Cristi L.; Pediatrics, School of MedicineBrain-derived neurotrophic factor (BDNF) is a neuronal growth and survival factor that harbors cardioprotective qualities that may attenuate dilated cardiomyopathy. In ~30% of the population, BDNF has a common, nonsynonymous single nucleotide polymorphism rs6265 (Val66Met), which might be correlated with increased risk of cardiovascular events. We previously showed that BDNF correlates with better cardiac function in Duchenne muscular dystrophy (DMD) patients. However, the effect of the Val66Met polymorphism on cardiac function has not been determined. The goal of the current study was to determine the effects of rs6265 on BDNF biomarker suitability and DMD cardiac functions more generally. We assessed cardiovascular and skeletal muscle function in human DMD patients segregated by polymorphic allele. We also compared echocardiographic, electrophysiologic, and cardiomyocyte contractility in C57/BL-6 wild-type mice with rs6265 polymorphism and in mdx/mTR (mDMD) mouse model of DMD. In human DMD patients, plasma BDNF levels had a positive correlation with left ventricular function, opposite to that seen in rs6265 carriers. There was also a substantial decrease in skeletal muscle function in carriers compared to the Val homozygotes. Surprisingly, the opposite was true when cardiac function of DMD carriers and non-carriers were compared. On the other hand, Val66Met wild-type mice had only subtle functional differences at baseline but significantly decreased cardiomyocyte contractility. Our results indicate that the Val66Met polymorphism alters myocyte contractility, conferring worse skeletal muscle function but better cardiac function in DMD patients. Moreover, these results suggest a mechanism for the relative preservation of cardiac tissues compared to skeletal muscle in DMD patients and underscores the complexity of BDNF signaling in response to mechanical workload.Item Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response(MDPI, 2024-07-09) Gandhi, Shivam; Sweeney, H. Lee; Hart, Cora C.; Han, Renzhi; Perry, Christopher G. R.; Pediatrics, School of MedicineDuchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy—the leading cause of death—inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.Item Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models(Springer Nature, 2021-11-24) Hakim, Chady H.; Kumar, Sandeep R. P.; Pérez-López, Dennis O.; Wasala, Nalinda B.; Zhang, Dong; Yue, Yongping; Teixeira, James; Zhang, Keqing; Million, Emily D.; Nelson, Christopher E.; Metzger, Samantha; Han, Jin; Louderman, Jacqueline A.; Schmidt, Florian; Feng, Feng; Grimm, Dirk; Smith, Bruce F.; Yao, Gang; Yang, N. Nora; Gersbach, Charles A.; Chen, Shi-jie; Herzog, Roland W.; Duan, Dongsheng; Pediatrics, School of MedicineAdeno-associated virus (AAV)-mediated CRISPR-Cas9 editing holds promise to treat many diseases. The immune response to bacterial-derived Cas9 has been speculated as a hurdle for AAV-CRISPR therapy. However, immunological consequences of AAV-mediated Cas9 expression have thus far not been thoroughly investigated in large mammals. We evaluate Cas9-specific immune responses in canine models of Duchenne muscular dystrophy (DMD) following intramuscular and intravenous AAV-CRISPR therapy. Treatment results initially in robust dystrophin restoration in affected dogs but also induces muscle inflammation, and Cas9-specific humoral and cytotoxic T-lymphocyte (CTL) responses that are not prevented by the muscle-specific promoter and transient prednisolone immune suppression. In normal dogs, AAV-mediated Cas9 expression induces similar, though milder, immune responses. In contrast, other therapeutic (micro-dystrophin and SERCA2a) and reporter (alkaline phosphatase, AP) vectors result in persistent expression without inducing muscle inflammation. Our results suggest Cas9 immunity may represent a critical barrier for AAV-CRISPR therapy in large mammals.Item Comprehensive cardiac magnetic resonance T1, T2, and extracellular volume mapping to define Duchenne cardiomyopathy(Elsevier, 2023-07-31) Sunthankar, Sudeep D.; George‑Durrett, Kristen; Crum, Kimberly; Slaughter, James C.; Kasten, Jennifer; Raucci, Frank J., Jr.; Markham, Larry W.; Soslow, Jonathan H.; Pediatrics, School of MedicineBackground: Cardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD). Cardiac magnetic resonance (CMR) parametric mapping sequences offer insights into disease pathophysiology. We propose a novel approach by leveraging T2 mapping in conjunction with T1 and extracellular volume (ECV) mapping to perform a virtual myocardial biopsy. While previous work has attempted to describe myocardial changes in DMD, our inclusion of T2 mapping enables comprehensive categorization of myocardial tissue characteristics of fibrosis, edema, and fat to better understand the pathological composition of the myocardium with disease progression. Methods: DMD patients (n = 49; median: 12 years-old) underwent CMR, including T1, T2, and ECV. Categories were defined as normal, isolated high T1 (normal ECV, high T1, normal T2), fibrosis (high ECV, normal or high T1, normal T2), edema (normal or high ECV, normal or high T1, high T2), fat (normal ECV, low T1, high T2) or fibrofatty (high ECV, low T1, high T2). Results: Median left ventricular ejection fraction (LVEF) was 59% with 27% having LVEF < 55%. Those with normal LVEF and no late gadolinium enhancement (37%) were younger in age (10.5 ± 2.6 vs. 15.0 ± 4.3 years-old, p < 0.001). Native T1 was elevated in at least one slice in 82% of patients. Those with high T2 at any slice (27%) were older (p = 0.005) and had lower LVEF (p = 0.005) compared with subjects with normal T2 (73%). The most common myocardial characterization was fibrosis (43%) followed by isolated high T1 (24%). Of the 13 with high T2, ten were categorized as edema, two as fibrofatty, and one as fat. Conclusion: CMR parametric mapping sequences offer insights into Duchenne cardiomyopathy pathophysiology, which should drive development of therapeutic interventions aimed at these targets. Myocardial fibrosis is common in DMD. Patients with elevated T2 were older and had lower LVEF. Though fat infiltration was present, the majority of subjects with elevated T2 met criteria for myocardial edema.Item Creation of a novel algorithm to identify patients with Becker and Duchenne muscular dystrophy within an administrative database and application of the algorithm to assess cardiovascular morbidity(Cambridge University Press, 2019-03) Soslow, Jonathan H.; Hall, Matthew; Burnette, W. Bryan; Hor, Kan; Chisolm, Joanne; Spurney, Christopher; Godown, Justin; Xu, Meng; Slaughter, James C.; Markham, Larry W.; Pediatrics, School of MedicineBACKGROUND: Outcome analyses in large administrative databases are ideal for rare diseases such as Becker and Duchenne muscular dystrophy. Unfortunately, Becker and Duchenne do not yet have specific International Classification of Disease-9/-10 codes. We hypothesised that an algorithm could accurately identify these patients within administrative data and improve assessment of cardiovascular morbidity. METHODS: Hospital discharges (n=13,189) for patients with muscular dystrophy classified by International Classification of Disease-9 code: 359.1 were identified from the Pediatric Health Information System database. An identification algorithm was created and then validated at three institutions. Multi-variable generalised linear mixed-effects models were used to estimate the associations of length of stay, hospitalisation cost, and 14-day readmission with age, encounter severity, and respiratory disease accounting for clustering within the hospital. RESULTS: The identification algorithm improved identification of patients with Becker and Duchenne from 55% (code 359.1 alone) to 77%. On bi-variate analysis, left ventricular dysfunction and arrhythmia were associated with increased cost of hospitalisation, length of stay, and mortality (p<0.001). After adjustment, Becker and Duchenne patients with left ventricular dysfunction and arrhythmia had increased length of stay with rate ratio 1.4 and 1.2 (p<0.001 and p=0.004) and increased cost of hospitalization with rate ratio 1.4 and 1.4 (both p<0.001). CONCLUSIONS: Our algorithm accurately identifies patients with Becker and Duchenne and can be used for future analysis of administrative data. Our analysis demonstrates the significant effects of cardiovascular disease on length of stay and hospitalisation cost in patients with Becker and Duchenne. Better recognition of the contribution of cardiovascular disease during hospitalisation with earlier more intensive evaluation and therapy may help improve outcomes in this patient population.Item Current Practices in Treating Cardiomyopathy and Heart Failure in Duchenne Muscular Dystrophy (DMD): Understanding Care Practices in Order to Optimize DMD Heart Failure Through ACTION(Springer Nature, 2022) Villa, Chet; Auerbach, Scott R.; Bansal, Neha; Birnbaum, Brian F.; Conway, Jennifer; Esteso, Paul; Gambetta, Katheryn; Hall, E. Kevin; Kaufman, Beth D.; Kirmani, Sonya; Lal, Ashwin K.; Martinez, Hugo R.; Nandi, Deipanjan; O’Connor, Matthew J.; Parent, John J.; Raucci, Frank J.; Shih, Renata; Shugh, Svetlana; Soslow, Jonathan H.; Tunuguntla, Hari; Wittlieb‑Weber, Carol A.; Kinnett, Kathi; Cripe, Linda; Pediatrics, School of MedicineCardiac disease has emerged as a leading cause of mortality in Duchenne muscular dystrophy in the current era. This survey sought to identify the diagnostic and therapeutic approach to DMD among pediatric cardiologists in Advanced Cardiac Therapies Improving Outcomes Network. Pediatric cardiology providers within ACTION (a multi-center pediatric heart failure learning network) were surveyed regarding their approaches to cardiac care in DMD. Thirty-one providers from 23 centers responded. Cardiac MRI and Holter monitoring are routinely obtained, but the frequency of use and indications for ordering these tests varied widely. Angiotensin converting enzyme inhibitor and aldosterone antagonist are generally initiated prior to onset of systolic dysfunction, while the indications for initiating beta-blocker therapy vary more widely. Seventeen (55%) providers report their center has placed an implantable cardioverter defibrillator in at least 1 DMD patient, while 11 providers (35%) would not place an ICD for primary prevention in a DMD patient. Twenty-three providers (74%) would consider placement of a ventricular assist device (VAD) as destination therapy (n = 23, 74%) and three providers (10%) would consider a VAD only as bridge to transplant. Five providers (16%) would not consider VAD at their institution. Cardiac diagnostic and therapeutic approaches vary among ACTION centers, with notable variation present regarding the use of advanced therapies (ICD and VAD). The network is currently working to harmonize medical practices and optimize clinical care in an era of rapidly evolving outcomes and cardiac/skeletal muscle therapies.Item Decoding the Gene Regulatory Network of Muscle Stem Cells in Mouse Duchenne Muscular Dystrophy: Revelations from Single-Nuclei RNA Sequencing Analysis(MDPI, 2023-08-05) Shen, Yan; Kim, Il-Man; Tang, Yaoliang; Anatomy, Cell Biology and Physiology, School of MedicineThe gene dystrophin is responsible for Duchenne muscular dystrophy (DMD), a grave X-linked recessive ailment that results in respiratory and cardiac failure. As the expression of dystrophin in muscle stem cells (MuSCs) is a topic of debate, there exists a limited understanding of its influence on the gene network of MuSCs. This study was conducted with the objective of investigating the effects of dystrophin on the regulatory network of genes in MuSCs. To comprehend the function of dystrophin in MuSCs from DMD, this investigation employed single-nuclei RNA sequencing (snRNA-seq) to appraise the transcriptomic profile of MuSCs obtained from the skeletal muscles of dystrophin mutant mice (DMDmut) and wild-type control mice. The study revealed that the dystrophin mutation caused the disruption of several long non-coding RNAs (lncRNAs), leading to the inhibition of MEG3 and NEAT1 and the upregulation of GM48099, GM19951, and GM15564. The Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the dystrophin mutation activated the cell adhesion pathway in MuSCs, inhibited the circulatory system process, and affected the regulation of binding. The study also revealed that the metabolic pathway activity of MuSCs was altered. The metabolic activities of oxidative phosphorylation (OXPHOS) and glycolysis were elevated in MuSCs from DMDmut. In summary, this research offers novel insights into the disrupted gene regulatory program in MuSCs due to dystrophin mutation at the single-cell level.Item Functional cardiac consequences of β-adrenergic stress-induced injury in a model of Duchenne muscular dystrophy(The Company of Biologists, 2024) Earl, Conner C.; Javier, Areli J.; Richards, Alyssa M.; Markham, Larry W.; Goergen, Craig J.; Welc, Steven S.; Medicine, School of MedicineCardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD); however, in the mdx mouse model of DMD, the cardiac phenotype differs from that seen in DMD-associated cardiomyopathy. Although some have used pharmacologic stress to stimulate injury and enhance cardiac pathology in the mdx model, many methods lead to high mortality with variable cardiac outcomes, and do not recapitulate the structural and functional cardiac changes seen in human disease. Here, we describe a simple and effective method to enhance the cardiac phenotype model in mdx mice using advanced 2D and 4D high-frequency ultrasound to monitor cardiac dysfunction progression in vivo. mdx and wild-type mice received daily low-dose (2 mg/kg/day) isoproterenol injections for 10 days. Histopathological assessment showed that isoproterenol treatment increased myocyte injury, elevated serum cardiac troponin I levels and enhanced fibrosis in mdx mice. Ultrasound revealed reduced ventricular function, decreased wall thickness, increased volumes and diminished cardiac reserve in mdx compared to wild-type mice. Our findings highlight the utility of challenging mdx mice with low-dose isoproterenol as a valuable model for exploring therapies targeting DMD-associated cardiac pathologies.Item Functional cardiac consequences of β-adrenergic stress-induced injury in the mdx mouse model of Duchenne muscular dystrophy(bioRxiv, 2024-04-20) Earl, Conner C.; Javier, Areli J.; Richards, Alyssa M.; Markham, Larry W.; Goergen, Craig J.; Welc, Steven S.; Anatomy, Cell Biology and Physiology, School of MedicineCardiomyopathy is the leading cause of death in Duchenne muscular dystrophy (DMD), however, in the mdx mouse model of DMD, the cardiac phenotype differs from that seen in DMD-associated cardiomyopathy. Although some have used pharmacologic stress to enhance the cardiac phenotype in the mdx model, many methods lead to high mortality, variable cardiac outcomes, and do not recapitulate the structural and functional cardiac changes seen in human disease. Here, we describe a simple and effective method to enhance the cardiac phenotype model in mdx mice using advanced 2D and 4D high-frequency ultrasound to monitor cardiac dysfunction progression in vivo. For our study, mdx and wild-type (WT) mice received daily low-dose (2 mg/kg/day) isoproterenol injections for 10 days. Histopathologic assessment showed that isoproterenol treatment increased myocyte injury, elevated serum cardiac troponin I levels, and enhanced fibrosis in mdx mice. Ultrasound revealed reduced ventricular function, decreased wall thickness, increased volumes, and diminished cardiac reserve in mdx mice compared to wild-type. Our findings highlight the utility of low-dose isoproterenol in mdx mice as a valuable model for exploring therapies targeting DMD-associated cardiac complications.