- Browse by Subject
Browsing by Subject "Dry eye"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Lacrimal gland development: From signaling interactions to regenerative medicine(Wiley, 2017-12) Garg, Ankur; Zhang, Xin; Biochemistry and Molecular Biology, School of MedicineThe lacrimal gland plays a pivotal role in keeping the ocular surface lubricated, and protecting it from environmental exposure and insult. Dysfunction of the lacrimal gland results in deficiency of the aqueous component of the tear film, which can cause dryness of the ocular surface, also known as the aqueous-deficient dry eye disease. Left untreated, this disease can lead to significant morbidity, including frequent eye infections, corneal ulcerations, and vision loss. Current therapies do not treat the underlying deficiency of the lacrimal gland, but merely provide symptomatic relief. To develop more sustainable and physiological therapies, such as in vivo lacrimal gland regeneration or bioengineered lacrimal gland implants, a thorough understanding of lacrimal gland development at the molecular level is of paramount importance. Based on the structural and functional similarities between rodent and human eye development, extensive studies have been undertaken to investigate the signaling and transcriptional mechanisms of lacrimal gland development using mouse as a model system. In this review, we describe the current understanding of the extrinsic signaling interactions and the intrinsic transcriptional network governing lacrimal gland morphogenesis, as well as recent advances in the field of regenerative medicine aimed at treating dry eye disease.Item Sustained Release of Tacrolimus From a Topical Drug Delivery System Promotes Corneal Reinnervation(Association for Research in Vision and Ophthalmology (ARVO), 2022) Daeschler, Simeon C.; Mirmoeini, Kaveh; Gordon, Tessa; Chan, Katelyn; Zhang, Jennifer; Ali, Asim; Feinberg, Konstantin; Borschel, Gregory H.; Surgery, School of MedicinePurpose: Corneal nerve fibers provide sensation and maintain the epithelial renewal process. Insufficient corneal innervation can cause neurotrophic keratopathy. Here, topically delivered tacrolimus is evaluated for its therapeutic potential to promote corneal reinnervation in rats. Methods: A compartmentalized neuronal cell culture was used to determine the effect of locally delivered tacrolimus on sensory axon regeneration in vitro. The regenerating axons but not the cell bodies were exposed to tacrolimus (50 ng/mL), nerve growth factor (50 ng/mL), or a vehicle control. Axon area and length were measured after 48 hours. Then, a biodegradable nanofiber drug delivery system was fabricated via electrospinning of a tacrolimus-loaded polycarbonate-urethane polymer. Biocompatibility, degradation, drug biodistribution, and therapeutic effectiveness were tested in a rat model of neurotrophic keratopathy induced by stereotactic trigeminal nerve ablation. Results: Sensory neurons whose axons were exposed to tacrolimus regenerated significantly more and longer axons compared to vehicle-treated cultures. Trigeminal nerve ablation in rats reliably induced corneal denervation. Four weeks after denervation, rats that had received tacrolimus topically showed similar limbal innervation but a significantly higher nerve fiber density in the center of the cornea compared to the non-treated control. Topically applied tacrolimus was detectable in the ipsilateral vitreal body, the plasma, and the ipsilateral trigeminal ganglion but not in their contralateral counterparts and vital organs after 4 weeks of topical release. Conclusions: Locally delivered tacrolimus promotes axonal regeneration in vitro and corneal reinnervation in vivo with minimal systemic drug exposure. Translational relevance: Topically applied tacrolimus may provide a readily translatable approach to promote corneal reinnervation.