- Browse by Subject
Browsing by Subject "Drugs of abuse"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identifying the role of pre-and postsynaptic GABAB receptors in behavior.(Elsevier, 2015-10) Kasten, Chelsea R.; Boehm, Stephen L.; Department of Psychology, School of ScienceAlthough many reviews exist characterizing the molecular differences of GABAB receptor isoforms, there is no current review of the in vivo effects of these isoforms. The current review focuses on whether the GABAB1a and GABAB1b isoforms contribute differentially to behaviors in isoform knockout mice. The roles of these receptors have primarily been characterized in cognitive, anxiety, and depressive phenotypes. Currently, the field supports a role of GABAB1a in memory maintenance and protection against an anhedonic phenotype, whereas GABAB1b appears to be involved in memory formation and a susceptibility to developing an anhedonic phenotype. Although GABAB receptors have been strongly implicated in drug abuse phenotypes, no isoform-specific work has been done in this field. Future directions include developing site-specific isoform knockdown to identify the role of different brain regions in behavior, as well as identifying how these isoforms are involved in development of behavioral phenotypes.Item Paper Spray-Mass Spectrometry Coupled with Pressure Sensitive Adhesive-Based Collection for the Recovery and Detection of Drugs of Abuse(2023-08) Prunty, Sarah G.; Manicke, Nicholas; Goodpaster, John; McKenna, JosiahIllicit drug abuse is a widespread issue in the United States and worldwide. Many methods seek to ease the analytical workload required to collect, analyze, and identify these drugs. Paper spray-mass spectrometry (PS-MS) is one response to this analytical workload as it offers a rapid, affordable, and simple means for drug identification by mass spectrometry. This work centers on the use of pressure-sensitive adhesive (PSA) lined paper as a PS-MS substrate for drug recovery and detection. The use of PSA paper as a sampling and analysis substrate has been previously established but is expanded herein with new capabilities and applications. Chapter 2 introduces the combination of color tests followed by PS-MS for presumptive and confirmatory drug identification. Three color tests (cobalt thiocyanate, Simon, or Marquis) were performed on the PSA paper with subsequent drug confirmation occurring by PS-MS. Chapter 3 examines the use of PSA paper and PS-MS for the recovery and detection of fentanyl, fentanyl precursors, and analogs from shipping-related surfaces and in the presence of high amounts of cutting agents. The use of a cartridge that accommodates a full-sized PSA paper ticket was also explored for drug detection. Chapter 4 assesses PS-MS with PSA paper on portable MS instrumentation. Analyte recovery and carryover as well as instrument robustness were evaluated. The color test and PS-MS protocol examined in Chapter 2 was also successfully applied to a portable MS instrument. Application of PS-MS to the portable system highlights the potential fieldability of the technique.