- Browse by Subject
Browsing by Subject "Drug targets"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item ALDH1 Bio-activates Nifuroxazide to Eradicate ALDHHigh Melanoma-Initiating Cells(Elsevier, 2018-12-20) Sarvi, Sana; Crispin, Richard; Lu, Yuting; Zeng, Lifan; Hurley, Thomas D.; Houston, Douglas R.; von Kriegsheim, Alex; Chen, Che-Hong; Mochly-Rosen, Daria; Ranzani, Marco; Mathers, Marie E.; Xu, Xiaowei; Xu, Wei; Adams, David J.; Carragher, Neil O.; Fujita, Mayumi; Schuchter, Lynn; Unciti-Broceta, Asier; Brunton, Valerie G.; Patton, E. Elizabeth; Biochemistry and Molecular Biology, School of Medicine5-Nitrofurans are antibiotic pro-drugs that have potential as cancer therapeutics. Here, we show that 5-nitrofurans can be bio-activated by aldehyde dehydrogenase (ALDH) 1A1/1A3 enzymes that are highly expressed in a subpopulation of cancer-initiating (stem) cells. We discover that the 5-nitrofuran, nifuroxazide, is selective for bio-activation by ALDH1 isoforms over ALDH2, whereby it both oxidizes ALDH1 and is converted to cytotoxic metabolites in a two-hit pro-drug mechanism. We show that ALDH1High melanoma cells are sensitive to nifuroxazide, while ALDH1A3 loss-of-function mutations confer drug resistance. In tumors, nifuroxazide targets ALDH1High melanoma subpopulations with the subsequent loss of melanoma-initiating cell potential. BRAF and MEK inhibitor therapy increases ALDH1 expression in patient melanomas, and effectively combines with nifuroxazide in melanoma cell models. The selective eradication of ALDH1High cells by nifuroxazide-ALDH1 activation goes beyond current strategies based on inhibiting ALDH1 and provides a rational basis for the nifuroxazide mechanism of action in cancer.Item Cellular membranes and lipid-binding domains as attractive targets for drug development(Bentham Science Publishers, 2008-08) Sudhahar, C.G.; Haney, R.M.; Xue, Y.; Stahelin, R.V.; Biochemistry and Molecular Biology, School of MedicineInterdisciplinary research focused on biological membranes has revealed them as signaling and trafficking platforms for processes fundamental to life. Biomembranes harbor receptors, ion channels, lipid domains, lipid signals, and scaffolding complexes, which function to maintain cellular growth, metabolism, and homeostasis. Moreover, abnormalities in lipid metabolism attributed to genetic changes among other causes are often associated with diseases such as cancer, arthritis and diabetes. Thus, there is a need to comprehensively understand molecular events occurring within and on membranes as a means of grasping disease etiology and identifying viable targets for drug development. A rapidly expanding field in the last decade has centered on understanding membrane recruitment of peripheral proteins. This class of proteins reversibly interacts with specific lipids in a spatial and temporal fashion in crucial biological processes. Typically, recruitment of peripheral proteins to the different cellular sites is mediated by one or more modular lipid-binding domains through specific lipid recognition. Structural, computational, and experimental studies of these lipid-binding domains have demonstrated how they specifically recognize their cognate lipids and achieve subcellular localization. However, the mechanisms by which these modular domains and their host proteins are recruited to and interact with various cell membranes often vary drastically due to differences in lipid affinity, specificity, penetration as well as protein-protein and intramolecular interactions. As there is still a paucity of predictive data for peripheral protein function, these enzymes are often rigorously studied to characterize their lipid-dependent properties. This review summarizes recent progress in our understanding of how peripheral proteins are recruited to biomembranes and highlights avenues to exploit in drug development targeted at cellular membranes and/or lipid-binding proteins.Item Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism(Elsevier, 2016) Rahman, Shafiqur; Engleman, Eric A.; Bell, Richard L.; Department of Psychiatry, IU School of MedicineAlcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions.