- Browse by Subject
Browsing by Subject "Drug discovery"
Now showing 1 - 10 of 27
Results Per Page
Sort Options
Item A multidimensional platform of patient-derived tumors identifies drug susceptibilities for clinical lenvatinib resistance(Elsevier, 2024) Sun, Lei; Wan, Arabella H.; Yan, Shijia; Liu, Ruonian; Li, Jiarui; Zhou, Zhuolong; Wu, Ruirui; Chen, Dongshi; Bu, Xianzhang; Ou, Jingxing; Li, Kai; Lu, Xiongbin; Wan, Guohui; Ke, Zunfu; Medical and Molecular Genetics, School of MedicineLenvatinib, a second-generation multi-receptor tyrosine kinase inhibitor approved by the FDA for first-line treatment of advanced liver cancer, facing limitations due to drug resistance. Here, we applied a multidimensional, high-throughput screening platform comprising patient-derived resistant liver tumor cells (PDCs), organoids (PDOs), and xenografts (PDXs) to identify drug susceptibilities for conquering lenvatinib resistance in clinically relevant settings. Expansion and passaging of PDCs and PDOs from resistant patient liver tumors retained functional fidelity to lenvatinib treatment, expediting drug repurposing screens. Pharmacological screening identified romidepsin, YM155, apitolisib, NVP-TAE684 and dasatinib as potential antitumor agents in lenvatinib-resistant PDC and PDO models. Notably, romidepsin treatment enhanced antitumor response in syngeneic mouse models by triggering immunogenic tumor cell death and blocking the EGFR signaling pathway. A combination of romidepsin and immunotherapy achieved robust and synergistic antitumor effects against lenvatinib resistance in humanized immunocompetent PDX models. Collectively, our findings suggest that patient-derived liver cancer models effectively recapitulate lenvatinib resistance observed in clinical settings and expedite drug discovery for advanced liver cancer, providing a feasible multidimensional platform for personalized medicine.Item AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery(Wiley, 2022-04-20) Potjewyd, Frances M.; Annor-Gyamfi, Joel K.; Aubé, Jeffrey; Chu, Shaoyou; Conlon, Ivie L.; Frankowski, Kevin J.; Guduru, Shiva K.R.; Hardy, Brian P.; Hopkins, Megan D.; Kinoshita, Chizuru; Kireev, Dmitri B.; Mason, Emily R.; Moerk, Charles T.; Nwogbo, Felix; Pearce, Kenneth H.; Richardson, Timothy I.; Rogers, David A.; Soni, Disha M.; Stashko, Michael; Wang, Xiaodong; Wells, Carrow; Willson, Timothy M.; Frye, Stephen V.; Young, Jessica E.; Axtman, Alison D.; Medicine, School of MedicineIntroduction: The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program. Methods: Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many protein products expressed by the genes nominated by AMP AD and suitable positive control compounds to be included in the set. Compounds contained within the set were manually selected and annotated with associated published, predicted, and/or experimental data. Results: We built an annotated set of 171 small molecule modulators targeting 98 unique proteins that have been nominated by AMP AD consortium members as novel targets for the treatment of AD. The majority of compounds included in the set are inhibitors. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which will require further optimization. A physical copy of the AD Informer Set can be requested on the Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) website. Discussion: Small molecules that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.Item BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome(Oxford University Press, 2009-11-18) Li, Liwei; Bum-Erdene, Khuchtumur; Baenziger, Peter H.; Rosen, Joshua J.; Hemmert, Jamison R.; Nellis, Joy A.; Pierce, Marlon E.; Meroueh, Samy O.; Biochemistry and Molecular Biology, School of MedicineBioDrugScreen is a resource for ranking molecules docked against a large number of targets in the human proteome. Nearly 1600 molecules from the freely available NCI diversity set were docked onto 1926 cavities identified on 1589 human targets resulting in >3 million receptor–ligand complexes requiring >200 000 cpu-hours on the TeraGrid. The targets in BioDrugScreen originated from Human Cancer Protein Interaction Network, which we have updated, as well as the Human Druggable Proteome, which we have created for the purpose of this effort. This makes the BioDrugScreen resource highly valuable in drug discovery. The receptor–ligand complexes within the database can be ranked using standard and well-established scoring functions like AutoDock, DockScore, ChemScore, X-Score, GoldScore, DFIRE and PMF. In addition, we have scored the complexes with more intensive GBSA and PBSA approaches requiring an additional 120 000 cpu-hours on the TeraGrid. We constructed a simple interface to enable users to view top-ranking molecules and access purchasing and other information for further experimental exploration.Item Cardioinformatics Advancements in Healthcare and Biotechnology(American Heart Association, 2023) Khomtchouk, Bohdan B.; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringItem Chemical inhibitor targeting the replication protein A-DNA interaction increases the efficacy of Pt-based chemotherapy in lung and ovarian cancer(Elsevier, 2015-01-01) Mishra, Akaash K.; Dormi, Silvana S.; Turchi, Alaina M.; Woods, Derek S.; Turchi, John J.; Department of Biochemistry and Molecular Biology, IU School of MedicinePlatinum-based chemotherapeutics exert their therapeutic efficacy via the formation of DNA adducts which interfere with DNA replication, transcription and cell division and ultimately induce cell death. Repair and tolerance of these Pt-DNA lesions by nucleotide excision repair (NER) and homologous recombination (HR) can substantially reduce the effectiveness of therapy. Inhibition of these repair pathways, therefore, holds the potential to sensitize cancer cells to Pt treatment and increase clinical efficacy. Replication Protein A (RPA) plays essential roles in both NER and HR, along with its role in DNA replication and DNA damage checkpoint activation. Each of these functions is, in part, mediated by RPA binding to single-stranded DNA (ssDNA). Here we report the synthesis and characterization of novel derivatives of RPA small molecule inhibitors and their activity in models of epithelial ovarian cancer (EOC) and non-small cell lung cancer (NSCLC). We have synthesized analogs of our previously reported RPA inhibitor TDRL-505 and determined the structure-activity relationships. These data led us to the identification of TDRL-551, which exhibited a greater than 2-fold increase in in vitro activity. TDRL-551 showed synergy with Pt in tissue culture models of EOC and in vivo efficacy, as a single agent and in combination with platinum, in a NSCLC xenograft model. These data demonstrate the utility of RPA inhibition in EOC and NSCLC and the potential in developing novel anticancer therapeutics that target RPA-DNA interactions.Item Computational Methods to Identify and Target Druggable Binding Sites at Protein-Protein Interactions in the Human Proteome(2019-09) Xu, David; Wu, Huanmei; Meroueh, Samy; Liu, Xiaowen; Janga, Sarath Chandra; Liu, YunlongProtein-protein interactions are fundamental in cell signaling and cancer progression. An increasing prevalent idea in cancer therapy is the development of small molecules to disrupt protein-protein interactions. Small molecules impart their action by binding to pockets on the protein surface of their physiological target. At protein-protein interactions, these pockets are often too large and tight to be disrupted by conventional design techniques. Residues that contribute a disproportionate amount of energy at these interfaces are known as hot spots. The successful disruption of protein-protein interactions with small molecules is attributed to the ability of small molecules to mimic and engage these hot spots. Here, the role of hot spots is explored in existing inhibitors and compared with the native protein ligand to explore how hot spot residues can be leveraged in protein-protein interactions. Few studies have explored the use of interface residues for the identification of hit compounds from structure-based virtual screening. The tight uPAR•uPA interaction offers a platform to test methods that leverage hot spots on both the protein receptor and ligand. A method is described that enriches for small molecules that both engage hot spots on the protein receptor uPAR and mimic hot spots on its protein ligand uPA. In addition, differences in chemical diversity in mimicking ligand hot spots is explored. In addition to uPAR•uPA, there are additional opportunities at unperturbed protein-protein interactions implicated in cancer. Projects such as TCGA, which systematically catalog the hallmarks of cancer across multiple platforms, provide opportunities to identify novel protein-protein interactions that are paramount to cancer progression. To that end, a census of cancer-specific binding sites in the human proteome are identified to provide opportunities for drug discovery at the system level. Finally, tumor genomic, protein-protein interaction, and protein structural data is integrated to create chemogenomic libraries for phenotypic screening to uncover novel GBM targets and generate starting points for the development of GBM therapeutic agents.Item The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53(American Society for Biochemistry and Molecular Biology, 2018-03-23) Madan, Esha; Parker, Taylor M.; Bauer, Matthias R.; Dhiman, Alisha; Pelham, Christopher J.; Nagane, Masaki; Kuppusamy, M. Lakshmi; Holmes, Matti; Holmes, Thomas R.; Shaik, Kranti; Shee, Kevin; Kiparoidze, Salome; Smith, Sean D.; Park, Yu-Soon A.; Gomm, Jennifer J.; Jones, Louise J.; Tomás, Ana R.; Cunha, Ana C.; Selvendiran, Karuppaiyah; Hansen, Laura A.; Fersht, Alan R.; Hideg, Kálmán; Gogna, Rajan; Kuppusamy, Periannan; Surgery, School of Medicinep53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential.Item d-Cystine di(m)ethyl ester reverses the deleterious effects of morphine on ventilation and arterial blood gas chemistry while promoting antinociception(Springer Nature, 2021-05-11) Gaston, Benjamin; Baby, Santhosh M.; May, Walter J.; Young, Alex P.; Grossfield, Alan; Bates, James N.; Seckler, James M.; Wilson, Christopher G.; Lewis, Stephen J.; Pediatrics, School of MedicineWe have identified thiolesters that reverse the negative effects of opioids on breathing without compromising antinociception. Here we report the effects of d-cystine diethyl ester (d-cystine diEE) or d-cystine dimethyl ester (d-cystine diME) on morphine-induced changes in ventilation, arterial-blood gas chemistry, A-a gradient (index of gas-exchange in the lungs) and antinociception in freely moving rats. Injection of morphine (10 mg/kg, IV) elicited negative effects on breathing (e.g., depression of tidal volume, minute ventilation, peak inspiratory flow, and inspiratory drive). Subsequent injection of d-cystine diEE (500 μmol/kg, IV) elicited an immediate and sustained reversal of these effects of morphine. Injection of morphine (10 mg/kg, IV) also elicited pronounced decreases in arterial blood pH, pO2 and sO2 accompanied by pronounced increases in pCO2 (all indicative of a decrease in ventilatory drive) and A-a gradient (mismatch in ventilation-perfusion in the lungs). These effects of morphine were reversed in an immediate and sustained fashion by d-cystine diME (500 μmol/kg, IV). Finally, the duration of morphine (5 and 10 mg/kg, IV) antinociception was augmented by d-cystine diEE. d-cystine diEE and d-cystine diME may be clinically useful agents that can effectively reverse the negative effects of morphine on breathing and gas-exchange in the lungs while promoting antinociception. Our study suggests that the d-cystine thiolesters are able to differentially modulate the intracellular signaling cascades that mediate morphine-induced ventilatory depression as opposed to those that mediate morphine-induced antinociception and sedation.Item Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer(Springer Nature, 2019-06-28) Ni, Yingjia; Schmidt, Keon R.; Werner, Barnes A.; Koenig, Jenna K.; Guldner, Ian H.; Schnepp, Patricia M.; Tan, Xuejuan; Jiang, Lan; Host, Misha; Sun, Longhua; Howe, Erin N.; Wu, Junmin; Littlepage, Laurie E.; Nakshatri, Harikrishna; Zhang, Siyuan; Surgery, IU School of MedicineLacking targetable molecular drivers, triple-negative breast cancer (TNBC) is the most clinically challenging subtype of breast cancer. In this study, we reveal that Death Effector Domain-containing DNA-binding protein (DEDD), which is overexpressed in > 60% of TNBCs, drives a mitogen-independent G1/S cell cycle transition through cytoplasm localization. The gain of cytosolic DEDD enhances cyclin D1 expression by interacting with heat shock 71 kDa protein 8 (HSC70). Concurrently, DEDD interacts with Rb family proteins and promotes their proteasome-mediated degradation. DEDD overexpression renders TNBCs vulnerable to cell cycle inhibition. Patients with TNBC have been excluded from CDK 4/6 inhibitor clinical trials due to the perceived high frequency of Rb-loss in TNBCs. Interestingly, our study demonstrated that, irrespective of Rb status, TNBCs with DEDD overexpression exhibit a DEDD-dependent vulnerability to combinatorial treatment with CDK4/6 inhibitor and EGFR inhibitor in vitro and in vivo. Thus, our study provided a rationale for the clinical application of CDK4/6 inhibitor combinatorial regimens for patients with TNBC.Item Discovery of potent inhibitors of α-synuclein aggregation using structure-based iterative learning(Springer Nature, 2024) Horne, Robert I.; Andrzejewska, Ewa A.; Alam, Parvez; Brotzakis, Z. Faidon; Srivastava, Ankit; Aubert, Alice; Nowinska, Magdalena; Gregory, Rebecca C.; Staats, Roxine; Possenti, Andrea; Chia, Sean; Sormanni, Pietro; Ghetti, Bernardino; Caughey, Byron; Knowles, Tuomas P. J.; Vendruscolo, Michele; Pathology and Laboratory Medicine, School of MedicineMachine learning methods hold the promise to reduce the costs and the failure rates of conventional drug discovery pipelines. This issue is especially pressing for neurodegenerative diseases, where the development of disease-modifying drugs has been particularly challenging. To address this problem, we describe here a machine learning approach to identify small molecule inhibitors of α-synuclein aggregation, a process implicated in Parkinson's disease and other synucleinopathies. Because the proliferation of α-synuclein aggregates takes place through autocatalytic secondary nucleation, we aim to identify compounds that bind the catalytic sites on the surface of the aggregates. To achieve this goal, we use structure-based machine learning in an iterative manner to first identify and then progressively optimize secondary nucleation inhibitors. Our results demonstrate that this approach leads to the facile identification of compounds two orders of magnitude more potent than previously reported ones.
- «
- 1 (current)
- 2
- 3
- »