- Browse by Subject
Browsing by Subject "Drug Synergism"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item The combined effects of cannabidiol and delta-9-tetrahydrocannabinol(1974) McCoy, Daniel JosephItem Ethanol and nicotine interaction within the posterior ventral tegmental area in male and female alcohol-preferring rats: evidence of synergy and differential gene activation in the nucleus accumbens shell(Springer, 2015-02) Truitt, William A.; Hauser, Sheketha R.; Deehan, Gerald A.; Toalston, Jamie E.; Wilden, Jessica A.; Bell, Richard L.; McBride, William J.; Rodd, Zachary A.; Department of Psychiatry, IU School of MedicineRATIONALE: Ethanol and nicotine are frequently co-abused. The biological basis for the high co-morbidity rate is not known. Alcohol-preferring (P) rats will self-administer EtOH or nicotine directly into the posterior ventral tegmental area (pVTA). OBJECTIVE: The current experiments examined whether sub-threshold concentrations of EtOH and nicotine would support the development of self-administration behaviors if the drugs were combined. METHODS: Rats were implanted with a guide cannula aimed at the pVTA. Rats were randomly assigned to groups that self-administered sub-threshold concentrations of EtOH (50 mg%) or nicotine (1 μM) or combinations of ethanol (25 or 50 mg%) and nicotine (0.5 or 1.0 μM). Alterations in gene expression downstream projections areas (nucleus accumbens shell, AcbSh) were assessed following a single, acute exposure to EtOH (50 mg%), nicotine (1 μM), or ethanol and nicotine (50 mg% + 1 μM) directly into the pVTA. RESULTS: The results indicated that P rats would co-administer EtOH and nicotine directly into the pVTA at concentrations that did not support individual self-administration. EtOH and nicotine directly administered into the pVTA resulted in alterations in gene expression in the AcbSh (50.8-fold increase in brain-derived neurotrophic factor (BDNF), 2.4-fold decrease in glial cell line-derived neurotrophic factor (GDNF), 10.3-fold increase in vesicular glutamate transporter 1 (Vglut1)) that were not observed following microinjections of equivalent concentrations/doses of ethanol or nicotine. CONCLUSION: The data indicate that ethanol and nicotine act synergistically to produce reinforcement and alter gene expression within the mesolimbic dopamine system. The high rate of co-morbidity of alcoholism and nicotine dependence could be the result of the interactions of EtOH and nicotine within the mesolimbic dopamine system.Item Prostaglandin E2 enhances bradykinin-stimulated release of neuropeptides from rat sensory neurons in culture(Society for Neuroscience, 1994-08) Vasko, MR; Campbell, WB; Waite, KJ; Pharmacology and Toxicology, School of MedicineProstaglandins are known to enhance the inflammatory and nociceptive actions of other chemical mediators of inflammation such as bradykinin. One possible mechanism for this sensitizing action is that prostanoids augment the release of neuroactive substances from sensory neurons. To initially test this hypothesis, we examined whether selected prostaglandins could enhance the resting or bradykinin-evoked release of immunoreactive substance P (iSP) and/or immunoreactive calcitonin gene-related peptide (iCGRP) from sensory neurons in culture. Bradykinin alone causes a concentration-dependent increase in the release of iSP and iCGRP from isolated sensory neurons, and this action is abolished in the absence of extracellular calcium. Pretreating the neurons with PGE2 (10 nM to 1 microM) potentiates the bradykinin-evoked release of both iSP and iCGRP by approximately two-to fourfold. At these concentrations, PGE2 alone did not significantly alter peptide release. Exposing the cultures to 1 microM PGF2 alpha is ineffective in altering either resting or bradykinin-evoked peptide release. Sensory neurons in culture contain cyclooxygenase-like immunoreactivity suggesting that the enzyme that converts arachidonic acid to prostaglandins is present. In addition, pretreating cultures with 14C-arachidonic acid yields radiolabeled eicosanoids that cochromatograph with known prostaglandin standards. Preexposing cultures to indomethacin abolishes the production of prostaglandins and attenuates the bradykinin-stimulated release of iSP and iCGRP. This implies that the synthesis of prostaglandins contributes to the bradykinin-evoked release of peptides. The augmentation of bradykinin-induced release of iSP and iCGRP by PGE2 may be one mechanism to account for the inflammatory and hyperalgesic actions of this eicosanoid.