- Browse by Subject
Browsing by Subject "Dorsomedial hypothalamus"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item The circumventricular organs form a potential neural pathway for lactate sensitivity: implications for panic disorder(Society for Neuroscience, 1997-12-15) Shekhar, Anantha; Keim, Stanley R.; Psychiatry, School of MedicinePatients with panic disorder experience panic attacks after intravenous sodium lactate infusions by an as yet unexplained mechanism. Lactate elicits a panic-like response in rats with chronic dysfunction of GABA neurotransmission in the dorsomedial hypothalamus (DMH). The circumventricular organs, organum vasculosum lamina terminalis (OVLT) and subfornical organ (SFO), are potential sites that could detect increases in plasma lactate levels and activate the DMH. To test this, we obtained baseline heart rate (HR) and blood pressure (BP) responses to lactate infusions in rats fit with femoral arterial and venous catheters. Next, unilateral chronic injection cannulae connected to an Alzet infusion pump filled with the GABA synthesis inhibitor L-allylglycine (L-AG) were implanted into the DMH. Another chronic injection cannula was implanted into the region of the OVLT, SFO, or an adjacent control site, the median preoptic area (MePOA). These rats were tested once again with lactate infusions after injection of either artificial cerebrospinal fluid (ACSF) or tetrodotoxin (TTX) into the CVO sites. Injecting TTX into the OVLT completely blocked the lactate-induced response, whereas TTX injections into the SFO or MePOA did not. Also, direct injections of lactate (100 or 500 nl) into the OVLT elicited robust anxiety-like responses in these rats. These results suggest that the OVLT may be the primary site that detects lactate infusions, activating an anxiety-like response in a compromised DMH, and provide the first neuroanatomical basis for lactate response in panic disorder.Item Disinhibiting neurons in the dorsomedial hypothalamus delays the onset of exertional fatigue and exhaustion in rats exercising in a warm environment(Elsevier, 2018-06-15) Zaretsky, Dmitry V.; Kline, Hannah; Zaretskaia, Maria V.; Brown, Mary Beth; Durant, Pamela J.; Alves, Nathan J.; Rusyniak, Daniel E.; Emergency Medicine, School of MedicineStimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia.Item Inhibition of the dorsomedial hypothalamus, but not the medullary raphe pallidus, decreases hyperthermia and mortality from MDMA given in a warm environment.(Wiley, 2014-04) Zaretsky, Dmitry V.; Zaretskaia, Maria V.; Durant, Pamela J.; Rusyniak, Daniel E.; Department of Medicine, IU School of MedicineThe central mechanisms through which MDMA mediates life-threatening hyperthermia when taken in a warm environment are not well described. It is assumed that MDMA alters normal thermoregulatory circuits resulting in increased heat production through interscapular brown adipose tissue (iBAT) and decreased heat dissipation through cutaneous vasoconstriction. We studied the role of the dorsomedial hypothalamus (DMH) and medullary raphe pallidus (mRPa) in mediating iBAT, tail blood flow, and locomotor effects produced by MDMA. Rats were instrumented with guide cannulas targeting either the DMH or the mRPa-brain regions involved in regulating iBAT and cutaneous vascular beds. In all animals, core temperature and locomotion were recorded with surgically implanted telemetric transmitters; and additionally either iBAT temperature (via telemetric transmitter) or tail artery blood flow (via tail artery Doppler cuff) were also recorded. Animals were placed in an environmental chamber at 32°C and microinjected with either control or the GABA agonist muscimol (80pmol) followed by an intravenous injection of saline or MDMA (7.5 mg kg-1). To prevent undue suffering, a core temperature of 41°C was chosen as the surrogate marker of mortality. Inhibition of the DMH, but not the mRPa, prevented mortality and attenuated hyperthermia and locomotion. Inhibition of either the DMH or the mRPa did not affect iBAT temperature increases or tail blood flow decreases. While MDMA increases iBAT thermogenesis and decreases heat dissipation through cutaneous vasoconstriction, thermoregulatory brain regions known to mediate these effects are not involved. Rather, the finding that inhibiting the DMH decreases both locomotion and body temperature suggests that locomotion may be a key central contributor to MDMA-evoked hyperthermia.Item Treadmill running restores MDMA-mediated hyperthermia prevented by inhibition of the dorsomedial hypothalamus(Elsevier, 2015-05-22) Zaretsky, Dmitry V.; Zaretskaia, Maria V.; Durant, Pamela J.; Rusyniak, Daniel E.; Department of Emergency Medicine, IU School of MedicineThe contribution of exercise to hyperthermia mediated by MDMA is not known. We recently showed that inhibiting the dorsomedial hypothalamus (DMH) attenuated spontaneous locomotion and hyperthermia and prevented deaths in rats given MDMA in a warm environment. The goal of this study was to confirm that restoring locomotion through a treadmill would reverse these effects thereby confirming that locomotion mediated by the DMH contributes to MDMA-mediated hyperthermia. Rats were randomized to receive bilateral microinjections, into the region of the DMH, of muscimol (80pmol/100nl) or artificial CSF followed by a systemic dose of either MDMA (7.5mg/kg, i.v.) or saline. Immediately after the systemic injection, rats were placed on a motorized treadmill maintained at 32°C. Rats were exercised at a fixed speed (10m/min) until their core temperature reached 41°C. Our results showed that a fixed exercise load abolished the decreases in temperature and mortality, seen previously with inhibition of the DMH in freely moving rats. Therefore, locomotion mediated by neurons in the DMH is critical to the development of hyperthermia from MDMA.