- Browse by Subject
Browsing by Subject "Dorsal raphe nucleus"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Crh receptor priming in the bed nucleus of the stria terminalis induces tph2 gene expression in the dorsomedial dorsal raphe nucleus and chronic anxiety(Elsevier, 2020-01-10) Donner, Nina C.; Mani, Sofia; Fitz, Stephanie D.; Kienzle, Drake M.; Shekhar, Anantha; Lowry, Christopher A.; Psychiatry, School of MedicineThe bed nucleus of the stria terminalis (BNST) is a nodal structure in neural circuits controlling anxiety-related defensive behavioral responses. It contains neurons expressing the stress- and anxiety-related neuropeptide corticotropin-releasing hormone (Crh) as well as Crh receptors. Repeated daily subthreshold activation of Crh receptors in the BNST is known to induce a chronic anxiety-like state, but how this affects neurotransmitter-relevant gene expression in target regions of the BNST is still unclear. Since the BNST projects heavily to the dorsal raphe nucleus (DR), the main source of brain serotonin, we here tested the hypothesis that such repeated, anxiety-inducing activation of Crh receptors in the BNST alters the expression of serotonergic genes in the DR, including tph2, the gene encoding the rate-limiting enzyme for brain serotonin synthesis, and slc6a4, the gene encoding the serotonin transporter (SERT). For 5 days, adult male Wistar rats received daily, bilateral, intra-BNST microinjections of vehicle (1% bovine serum albumin in 0.9% saline, n = 11) or behaviorally subthreshold doses of urocortin 1 (Ucn1, n = 11), a potent Crh receptor agonist. Priming with Ucn1 increased tph2 mRNA expression selectively within the anxiety-related dorsal part of the DR (DRD) and decreased social interaction (SI) time, a measure of anxiety-related defensive behavioral responses in rodents. Decreased social interaction was strongly correlated with increased tph2 mRNA expression in the DRD. Together with previous studies, our data are consistent with the hypothesis that Crh-mediated control of the BNST/DRD-serotonergic system plays a key role in the development of chronic anxiety states, possibly also contributing to stress-induced relapses in drug abuse and addiction behavior.Item Negative consequences of early-life adversity on substance use as mediated by corticotropin-releasing factor modulation of serotonin activity(Elsevier, 2018-08-07) Forster, Gina L.; Anderson, Eden M.; Scholl, Jamie L.; Lukkes, Jodi L.; Watt, Michael J.; Psychiatry, School of MedicineEarly-life adversity is associated with increased risk for substance abuse in later life, with women more likely to report past and current stress as a mediating factor in their substance use and relapse as compared to men. Preclinical models of neonatal and peri-adolescent (early through late adolescence) stress all support a direct relationship between experiences of early-life adversity and adult substance-related behaviors, and provide valuable information regarding the underlying neurobiology. This review will provide an overview of these animal models and how these paradigms alter drug and alcohol consumption and/or seeking in male and female adults. An introduction to the corticotropin-releasing factor (CRF) and serotonin systems, their development and their interactions at the level of the dorsal raphe will be provided, illustrating how this particular stress system is sexually dimorphic, and is well positioned to be affected by stressors early in development and throughout maturation. A model for CRF-serotonin interactions in the dorsal raphe and how these influence dopaminergic activity within the nucleus accumbens and subsequent reward-associated behaviors will be provided, and alterations to the activity of this system following early-life adversity will be identified. Overall, converging findings suggest that early-life adversity has long-term effects on the functioning of the CRF-serotonin system, highlighting a potentially important and targetable mediator linking stress to addiction. Future work should focus on identifying the exact mechanisms that promote long-term changes to the expression and activity of CRF receptors in the dorsal raphe. Moreover, it is important to clarify whether similar neurobiological mechanisms exist for males and females, given the sexual dimorphism both in CRF receptors and serotonin indices in the dorsal raphe and in the behavioral outcomes of early-life adversity.