ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Diseases and disorders of / related to bone"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Nf1 haploinsufficiency alters myeloid lineage commitment and function, leading to deranged skeletal homeostasis
    (Wiley, 2015-10) Rhodes, Steven D.; Yang, Hao; Dong, Ruizhi; Menon, Keshav; He, Yongzheng; Li, Zhaomin; Chen, Shi; Staser, Karl W.; Jiang, Li; Department of Anatomy & Cell Biology, IU School of Medicine
    Although nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1(+/-) mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1-LysM) is necessary and sufficient to promote multiple osteoclast gains-in-function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1-Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras-dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University