ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Diphosphonates"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effects of anti-resorptive treatment on the material properties of individual canine trabeculae in cyclic tensile tests
    (Elsevier, 2021) Frank, Martin; Grabos, Andreas; Reisinger, Andreas G.; Burr, David B.; Pahr, Dieter H.; Allen, Matthew R.; Thurner, Philipp J.; Anatomy and Cell Biology, School of Medicine
    Osteoporosis is defined as a decrease of bone mass and strength, as well as an increase in fracture risk. It is conventionally treated with antiresorptive drugs, such as bisphosphonates (BPs) and selective estrogen receptor modulators (SERMs). Although both drug types successfully decrease the risk of bone fractures, their effect on bone mass and strength is different. For instance, BP treatment causes an increase of bone mass, stiffness and strength of whole bones, whereas SERM treatment causes only small (4%) increases of bone mass, but increased bone toughness. Such improved mechanical behavior of whole bones can be potentially related to the bone mass, bone structure or material changes. While bone mass and architecture have already been investigated previously, little is known about the mechanical behavior at the tissue/material level, especially of trabecular bone. As such, the goal of the work presented here was to fill this gap by performing cyclic tensile tests in a wet, close to physiologic environment of individual trabeculae retrieved from the vertebrae of beagle dogs treated with alendronate (a BP), raloxifene (a SERM) or without treatments. Identification of material properties was performed with a previously developed rheological model and of mechanical properties via fitting of envelope curves. Additionally, tissue mineral density (TMD) and microdamage formation were analyzed. Alendronate treatment resulted in a higher trabecular tissue stiffness and strength, associated with higher levels of TMD. In contrast, raloxifene treatment caused a higher trabecular toughness, pre-dominantly in the post-yield region. Microdamage formation during testing was not affected by either anti-resorptive treatment regimens. These findings highlight that the improved mechanical behavior of whole bones after anti-resorptive treatment is at least partly caused by improved material properties, with different mechanisms for alendronate and raloxifene. This study further shows the power of performing a mechanical characterization of trabecular bone at the level of individual trabeculae for better understanding of clinically relevant mechanical behavior of bone.
  • Loading...
    Thumbnail Image
    Item
    In vitro and in vivo studies using non-traditional bisphosphonates
    (Elsevier, 2020-05) Plotkin, Lilian I.; Buvinic, Sonja; Balanta-Melo, Julián; Anatomy and Cell Biology, School of Medicine
    Non-traditional bisphosphonates, that is, bisphosphonates that do not inhibit osteoclast viability or function, were initially reported in the 1990s by Socrates Papapoulos' group. Originally designed to study the role of the R1 residue of aminobisphosphonates on bisphosphonate affinity for hydroxyapatite, these modified bisphosphonates retained similar affinity for mineralized bone as their parent compounds, but they lacked the potential to inhibit the mevalonate pathway or bone resorption. We found that, similar to classical bisphosphonates, these non-traditional compounds prevented osteoblast and osteocyte apoptosis in vitro through a pathway that requires the expression of the gap junction protein connexin 43, and the activation of the Src/MEK/ERK signaling pathway. Furthermore, one of those compounds named IG9402 (also known as amino-olpadronate or lidadronate), was able to inhibit osteoblast and osteocyte apoptosis, without affecting osteoclast number or bone resorption in vivo in a model of glucocorticoid-induced osteoporosis. IG9402 administration also ameliorated the decrease in bone mass and in bone mechanical properties induced by glucocorticoids. Similarly, IG9402 prevented apoptosis of osteoblastic cells in a model of immobilization due to hindlimb unloading. However, in this case, the bisphosphonate was not able to preserve the bone mass, and only partially prevented the decrease in bone mechanical properties induced by immobilization. The effect of IG9402 administration was also tested in a mouse model of masticatory hypofunction through the induction of masseter muscle atrophy by unilateral injection of botulinum toxin type A (BoNTA). IG9402 partially inhibited the loss of trabecular bone microstructure in the mandibular condyle, but not the decrease in masseter muscle mass induced by BoNTA administration. In summary, these non-traditional bisphosphonates that lack anti-resorptive activity but are able to preserve osteoblast and osteocyte viability could constitute useful tools to study the consequences of preventing apoptosis of osteoblastic cells in animal models. Furthermore, they could be used to treat conditions associated with reduced bone mass and increased bone fragility in which a reduction of bone remodeling is not desirable.
  • Loading...
    Thumbnail Image
    Item
    Influence of Zoledronic Acid on Atrial Electrophysiological Parameters and Electrocardiographic Measurements
    (Wiley Blackwell (John Wiley & Sons), 2015-06) Tisdale, James E.; Allen, Matthew R.; Overholser, Brian R.; Jaynes, Heather A.; Kovacs, Richard J.; Department of Anatomy & Cell Biology, IU School of Medicine
    INTRODUCTION: Our objective was to determine effects of zoledronic acid (ZA) on atrial electrophysiological parameters and electrocardiographic measurements. METHODS AND RESULTS: Ex vivo perfusion study: Isolated guinea pig hearts were perfused with modified Krebs-Henseleit (K-H) buffer with or without ZA 0.07 mg/kg/L (each n = 6). In ZA-perfused hearts, atrial action potential at 90% repolarization (APD90 ) decreased more from baseline than in controls (-23.2% ± -5.1% vs. -2.1% ± -8.1%, P < 0 .0001), as did APD30 (-28.8% ± -3.8% vs. -2.1% ± -2.1%, P < 0.0001). In vivo dose-response study: Guinea pigs underwent intraperitoneal injections every 2 weeks in 1 of 4 groups (each n = 8): ZA 0.007 mg/kg (low-dose), ZA 0.07 mg/kg (medium-dose), ZA 0.7 mg/kg (high-dose), or placebo. Hearts were excised at 8 weeks and perfused with modified K-H. Atrial effective refractory period (ERP) was lower with medium- and high-dose ZA versus placebo (P = 0.004). Atrial APD30 was lower with high-dose ZA versus placebo, low and medium doses (P < 0.001). Canine ECG study: Mature female beagles received intravenous ZA 0.067 mg/kg or saline (placebo; each n = 6) every 2 weeks for 12 weeks. P wave dispersion was greater in the ZA group (7.7 ± 3.7 vs. 3.4 ± 2.6 ms, P = 0.04). There were no significant differences in P wave index, maximum or minimum P wave duration, or PR interval. CONCLUSION: ZA shortens left atrial APD and ERP and increases P wave dispersion.
  • Loading...
    Thumbnail Image
    Item
    International Myeloma Working Group recommendations for the treatment of multiple myeloma-related bone disease
    (American Society of Clinical Oncology, 2013-06-20) Terpos, Evangelos; Morgan, Gareth; Dimopoulos, Meletios A.; Drake, Matthew T.; Lentzsch, Suzanne; Raje, Noopur; Sezer, Orhan; Garcıa-Sanz, Ramon; Shimizu, Kazuyuki; Turesson, Ingemar; Reiman, Tony; Jurczyszyn, Artur; Merlini, Giampaolo; Spencer, Andrew; Leleu, Xavier; Cavo, Michele; Munshi, Nikhil; Rajkumar, S. Vincent; Durie, Brian G.M.; Roodman, G. David; Department of Medicine, IU School of Medicine
    PURPOSE: The aim of the International Myeloma Working Group was to develop practice recommendations for the management of multiple myeloma (MM) -related bone disease. METHODOLOGY: An interdisciplinary panel of clinical experts on MM and myeloma bone disease developed recommendations based on published data through August 2012. Expert consensus was used to propose additional recommendations in situations where there were insufficient published data. Levels of evidence and grades of recommendations were assigned and approved by panel members. RECOMMENDATIONS: Bisphosphonates (BPs) should be considered in all patients with MM receiving first-line antimyeloma therapy, regardless of presence of osteolytic bone lesions on conventional radiography. However, it is unknown if BPs offer any advantage in patients with no bone disease assessed by magnetic resonance imaging or positron emission tomography/computed tomography. Intravenous (IV) zoledronic acid (ZOL) or pamidronate (PAM) is recommended for preventing skeletal-related events in patients with MM. ZOL is preferred over oral clodronate in newly diagnosed patients with MM because of its potential antimyeloma effects and survival benefits. BPs should be administered every 3 to 4 weeks IV during initial therapy. ZOL or PAM should be continued in patients with active disease and should be resumed after disease relapse, if discontinued in patients achieving complete or very good partial response. BPs are well tolerated, but preventive strategies must be instituted to avoid renal toxicity or osteonecrosis of the jaw. Kyphoplasty should be considered for symptomatic vertebral compression fractures. Low-dose radiation therapy can be used for palliation of uncontrolled pain, impending pathologic fracture, or spinal cord compression. Orthopedic consultation should be sought for long-bone fractures, spinal cord compression, and vertebral column instability.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University